Independence of Path and Conservative Vector Fields
MATH 311, Calculus III

J. Robert Buchanan
Department of Mathematics
Summer 2011
Goal

We would like to know conditions on a vector field function
\(\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle \), so that if \(A \) and \(B \) are any two points fixed in the plane, then

\[
\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}
\]

is the same regardless of the path \(C \) taken from \(A \) to \(B \).
Goal

We would like to know conditions on a vector field function \(\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle \), so that if \(A \) and \(B \) are any two points fixed in the plane, then

\[
\int_C \mathbf{F}(x, y) \cdot dr
\]

is the same regardless of the path \(C \) taken from \(A \) to \(B \).

In this case the line integral is independent of path.
A region $D \subset \mathbb{R}^2$ is called **connected** if every pair of points in D can be connected by a piecewise-smooth curve lying entirely in D.

Connected

Not connected
A region $D \subset \mathbb{R}^2$ is **simply connected** if every closed curve C in D encloses only points in D.

Simply connected

Not simply connected
Theorem

Suppose that the vector field $\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle$ is continuous on the open, connected region $D \subset \mathbb{R}^2$. Then the line integral $\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}$ is independent of path if and only if \mathbf{F} is conservative on D.
Suppose the vector field is conservative.

- \(\mathbf{F}(x, y) = \nabla f(x, y) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = \langle M(x, y), N(x, y) \rangle \)

- Select any two points \(A = (x_0, y_0) \) and \(B = (x_1, y_1) \) in \(D \) and let \(C = (x(t), y(t)) \) for \(a \leq t \leq b \) be any path connecting \(A \) and \(B \).
Suppose the vector field is conservative.

- \(\mathbf{F}(x, y) = \nabla f(x, y) = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right\rangle = \left\langle M(x, y), N(x, y) \right\rangle \)

Select any two points \(A = (x_0, y_0) \) and \(B = (x_1, y_1) \) in \(D \) and let \(C = (x(t), y(t)) \) for \(a \leq t \leq b \) be any path connecting \(A \) and \(B \).

\[
\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = \int_C M(x, y) \, dx + N(x, y) \, dy
\]

\[
= \int_a^b \left[\frac{\partial f}{\partial x}(x(t), y(t))x'(t) + \frac{\partial f}{\partial y}(x(t), y(t))y'(t) \right] \, dt
\]

\[
= \int_a^b \frac{df}{dt}(x(t), y(t)) \, dt
\]

\[
= f(x_1, y_1) - f(x_0, y_0)
\]
Theorem

Suppose that $\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle$ is continuous in the open, connected region $D \subset \mathbb{R}^2$ and that C is any piecewise-smooth curve lying in D, with an initial point (x_0, y_0) and terminal point (x_1, y_1). Then, if \mathbf{F} is conservative on D, with $\mathbf{F} = \nabla f(x, y)$, we have

$$\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = f(x, y) \bigg|_{(x_0, y_0)}^{(x_1, y_1)} = f(x_1, y_1) - f(x_0, y_0).$$
Suppose $\mathbf{F}(x, y) = (2xe^{2y} + 4y^3)\mathbf{i} + (2x^2e^{2y} + 12xy^2)\mathbf{j}$.

1. Show that the line integral $\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}$ is independent of path.

2. Evaluate the line integral along any piecewise-smooth curve connecting $(0, 1)$ to $(2, 3)$.
If \(f(x, y) = x^2 e^{2y} + 4xy^3 \), then \(\nabla f(x, y) = \mathbf{F}(x, y) \) which implies \(\mathbf{F}(x, y) \) is conservative and hence independent of path.
If \(f(x, y) = x^2 e^{2y} + 4xy^3 \), then \(\nabla f(x, y) = F(x, y) \) which implies \(F(x, y) \) is conservative and hence independent of path.

By the Fundamental Theorem of Calculus for Line Integrals

\[
\int_C F(x, y) \cdot dr = f(x, y) \bigg|_{(0,1)}^{(2,3)} = 216 + 4e^6.
\]
Suppose $\mathbf{F}(x, y) = x^2 y^3 \mathbf{i} + x^3 y^2 \mathbf{j}$ and then find the work done moving from $(0, 0)$ to $(2, 1)$.
Example (4 of 4)

\[
F(x, y) = x^2y^3 \mathbf{i} + x^3y^2 \mathbf{j}
\]

If \(f(x, y) = \frac{1}{3}x^3y^3 \), then \(\nabla f(x, y) = F(x, y) \) which implies \(F(x, y) \) is conservative and hence independent of path.
Example (4 of 4)

\[\mathbf{F}(x, y) = x^2 y^3 \mathbf{i} + x^3 y^2 \mathbf{j} \]

1. If \(f(x, y) = \frac{1}{3} x^3 y^3 \), then \(\nabla f(x, y) = \mathbf{F}(x, y) \) which implies \(\mathbf{F}(x, y) \) is conservative and hence independent of path.

2. By the Fundamental Theorem of Calculus for Line Integrals

\[
W = \int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = f(x, y) \bigg|_{(0,0)}^{(2,1)} = \frac{8}{3}.
\]
Theorem

Suppose that $\mathbf{F}(x, y)$ is continuous in the open, connected region $D \subset \mathbb{R}^2$. Then \mathbf{F} is conservative on D if and only if $\int_C \mathbf{F}(x, y) \cdot dr = 0$ for every piecewise-smooth closed curve lying in D.
Suppose $\int_C F(x, y) \cdot dr = 0$ for every piecewise-smooth closed curve lying in D.

- Let P and Q be any two points in D.
- Let C_1 and C_2 be any two piecewise-smooth curves connecting P and Q as shown next.
\[C = C_1 \cup (-C_2) \] is a closed curve in \(D \).
0 = \int_{C} \mathbf{F}(x, y) \cdot d\mathbf{r} \\
= \int_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r} + \int_{-C_2} \mathbf{F}(x, y) \cdot d\mathbf{r} \\
= \int_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r} - \int_{C_2} \mathbf{F}(x, y) \cdot d\mathbf{r} \\
\int_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r} = \int_{C_2} \mathbf{F}(x, y) \cdot d\mathbf{r}
Recall: a region is **simply-connected** if it contains no holes.

Theorem

Suppose that $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on a simply-connected region D. Then

\[
\int_C M(x, y) \, dx + N(x, y) \, dy \text{ is independent of path in } D \text{ if and only if } M_y(x, y) = N_x(x, y) \text{ for all } (x, y) \in D.
\]
Example

Show that the following line integral is independent of path.

\[\int_C e^{2y} \, dx + (1 + 2xe^{2y}) \, dy \]
Example

Show that the following line integral is independent of path.

\[\int_C e^{2y} \, dx + (1 + 2xe^{2y}) \, dy \]

Let \(M(x, y) = e^{2y} \) and \(N(x, y) = 1 + 2xe^{2y} \). Then

\[M_y(x, y) = 2e^{2y} = N_x(x, y) \]

and thus by the previous theorem the line integral is independent of path.
Summary: suppose that $\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle$ where $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on an open, simply-connected region $D \subset \mathbb{R}^2$. In this case the following statements are equivalent.

1. $\mathbf{F}(x, y)$ is conservative in D.
2. $\mathbf{F}(x, y)$ is a gradient field in D (i.e. $\mathbf{F}(x, y) = \nabla f(x, y)$ for some potential function f, for all $(x, y) \in D$).
3. $\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}$ is independent of path in D.
4. $\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = 0$ for every piecewise-smooth closed curve C lying in D.
5. $M_y(x, y) = N_x(x, y)$ for all $(x, y) \in D$.
Suppose $F(x, y) = \frac{1}{\sqrt{x^2 + y^2}} \langle -y, x \rangle$.

The vector field is not conservative since along the closed path the vector field is always oriented with the curve (or always against it).
Suppose \(\mathbf{F}(x, y) = \langle y, x \rangle \).

The vector field is conservative since along the closed path as much of the vector field is oriented with the curve as against it.
Remark: much of what we have stated for two-dimensional vector fields can be extended to three-dimensional vector fields.

Example

Evaluate the line integral

$$\int_C y^2 \, dx + (2xy + e^{3z}) \, dy + 3ye^{3z} \, dz$$

along any piecewise-smooth path connecting \((0, 1, 1/2)\) to \((1, 0, 2)\).
If \(f(x, y, z) = xy^2 + ye^{3z} \) then \(\mathbf{F}(x, y, z) = \nabla f(x, y, z) \) which implies \(\mathbf{F}(x, y, z) \) is conservative.
\[F(x, y, z) = \langle y^2, 2xy + e^{3z}, 3ye^{3z} \rangle \]

1. If \(f(x, y, z) = xy^2 + ye^{3z} \) then \(F(x, y, z) = \nabla f(x, y, z) \) which implies \(F(x, y, z) \) is conservative.

2. By the Fundamental Theorem of Calculus for Line Integrals

\[
\int_C F(x, y, z) \cdot dr = xy^2 + ye^{3z}\bigg|_{(0,1,1/2)}^{(1,0,2)} = -e^{3/2}.
\]
Theorem

Suppose that the vector field \(\mathbf{F}(x, y, z) \) is continuous on the open, connected region \(D \subset \mathbb{R}^3 \). Then, the line integral

\[
\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}
\]

is independent of path in \(D \) if and only if the vector field \(\mathbf{F} \) is conservative in \(D \), that is,

\[
\mathbf{F}(x, y, z) = \nabla f(x, y, z), \quad \text{for all } (x, y, z) \text{ in } D, \quad \text{for some scalar function } f \text{ (a potential function for } \mathbf{F} \text{).}
\]

Further, for any piecewise-smooth curve \(C \) lying in \(D \), with initial point \((x_1, y_1, z_1)\) and terminal point \((x_2, y_2, z_2)\) we have

\[
\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r} = f(x, y, z) \bigg|_{(x_1, y_1, z_1)}^{(x_2, y_2, z_2)} = f(x_2, y_2, z_2) - f(x_1, y_1, z_1).
\]
Homework

- Read Section 14.3.
- Exercises: 1–51 odd