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Terminology

Arbitrage: a trading strategy which takes advantage of
two securities being mispriced relative to one another in
order to make a profit.

Options: the right, but not the obligation, to purchase or
sell a security at an agreed upon price in the future.

Volatility: the range of movement in the price of a
security

Black-Scholes Pricing Formula: a mathematical formula
developed by Fischer Black and Myron Scholes (and
extended by Robert Merton) for pricing options. They
won the Nobel Prize in Economics in 1997 for this work.
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Why Study Financial Mathematics?

To reduce the risks inherent in investing.
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Closing prices of Sony Corporation stock traded on the

NYSE between 6/23/2000 and 7/03/2001. Data obtained

from http://www.financialweb.com/.
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Efficient Market Hypothesis

The present price of a security reflects the entire past
history of the security.

The past history holds no additional information.

The price of the security responds immediately to new
information.

The relative change in the price of a security is more important

than the absolute change.
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Lognormal Random Variables

Random variable: a quantity characterized as being able
to take on different values with different probabilities.

Normal distribution: a formula giving the probability of a
random variable having a “bell-shaped” distribution.

x

P

Lognormal distribution: a formula giving the probability of
a random variable whose logarithm has a normal
distribution.
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Lognormal Changes in Sony Stock

Starting with the closing prices {S(0), S(1), . . . , S(252)}, form
the random variable

X(n) = ln

(

S(n + 1)

S(n)

)

,

which appears to be normally distributed.
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Sony Statistics

Expected value, µ ≈ 0.00160732.

Standard deviation or volatility, σ ≈ 0.0257846.
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Stochastic Models

Model of risk-free investing: continuously compounded
interest,

S(t) = S0e
µt.

In this case

d(lnS(t)) = ln

(

S(t + dt)

S(t)

)

= ln

(

S0e
µ(t+dt)

S0eµt

)

= µdt.

Model incorporating unexpected news: geometric Brownian
motion,

d(ln S(t)) = µdt + σ
√

dt dz

where z is a standard normal random variable.
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Properties of d(ln S(t))

E[d(ln S(t))] = E[µdt + σ
√

dt dz]

= µdt + σ
√

dt E[dz]

= µdt

Var(d(lnS(t))) = E[d(ln S(t))2] − E[d(ln S(t))]2

= (µdt)2 + σ2 dt E[(dz)2] − (µdt)2

= σ2 dt Var(dz)

= σ2 dt

which explains why the volatility scales like
√

dt.
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Change of Variables

A more natural quantity than d(ln S) to model is dS. In
Calculus I we used to learn that

d(ln S) =
dS

S
,

so wouldn’t
d(ln S) = µdt + σ

√
dt dz

imply

dS = µS dt + σS
√

dt dz?

Actually, no.
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Itô’s Lemma

Suppose random process x is defined by the stochastic
differential equation

dx = a(x, t) dt + b(x, t) dz,

where z is a normal random variable and suppose
y = F (x, t), then

dy =

[

a
∂F

∂x
+

∂F

∂t
+

1

2
b2∂2F

∂x2

]

dt + b
∂F

∂x
dz.

Thus

dS =

(

µ +
1

2
σ2

)

S dt + σS
√

dt dz
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Binomial Lattice Model

Assumptions: Price of a security can only go up by a factor
u > 1 with probability 0 < p < 1 or down by a factor 0 < d < 1
with probability 1 − p.

S(0) S(1) S(2) S(4)S(3)

u

u^2

u^3 u^4

d

d^2

d^3 d^4

ud

u^2d

u^3d

ud^2

u^2d^2

ud^3
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Lattice Parameters

For a single time step of size dt,

µdt = p ln u + (1 − p) ln d

σ2 dt = p(ln u)2 + (1 − p)(ln d)2 − (p lnu + (1 − p) ln d)2.

Assume that d = 1/u and derive the system of two
equations and two unknowns,

µdt = (2p − 1) ln u

σ2 dt = 4p(1 − p)(lnu)2.

Square the first equation and add to the second.
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u, d, p, and all that

Thus we have,

ln u =
√

µ2(dt)2 + σ2dt

2p − 1 =
µdt

√

µ2(dt)2 + σ2dt

Assume that dt is small and finally we have the
approximations,

u ≈ eσ
√

dt, d ≈ e−σ
√

dt, p ≈ 1

2

(

1 +
µ

σ

√
dt
)

.

The volatility affects the relative change in the value of the

security, not the drift parameter.
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Sony Parameters

For the Sony Corp. data shown earlier,

u ≈ 1.02612

d ≈ 0.974545

p ≈ 0.531168

To model future values of the security take a random walk
through the binomial lattice using these parameters or use
the discrete version of the stochastic process.

ln S(t + ∆t) − ln S(t) = µ∆t + σ
√

∆tz(t)

leads to
S(t + ∆t) = S(t)eµ∆t+σ

√
∆tz(t).
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Realization

Using either approach we could obtain this realization of the
future values of the security.
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Options and Arbitrage

Call: an option which allows the owner to buy a security
in the future at a guaranteed price. The symbol C will
denote the price of a call option.

Put: an option (with price P ) which allows the owner to
sell a security in the future at a guaranteed price.

Strike price: the future guaranteed price (K) of the
security for the owner of an option.

Expiration time: the future date (T ) by which an option
must be exercised or it is lost.

European options: exercised only when t = T .
American options: exercised whenever 0 ≤ t ≤ T .
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European Put-Call Parity

There exists a relationship between the price of a security
S, the prices of calls C and puts P with the same strike
price K and exercise time T , and the prevailing risk-free
interest rate r.

S + Pe = Ce + Ke−rT

If this relationship does not hold, then there is a risk-free
way to make a guaranteed profit with no personal
investment.

The following two examples suggest a means by which this

formula is proven.
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Example 1

Suppose S + Pe > Ce + Ke−rT .
Let S = 31, K = 30, Ce = 3, Pe = 2.25, r = 10%, and
T = 0.25. Then

S + Pe = 33.25

Ce + Ke−rT = 32.26

1. Buy the Call and sell short the security and the Put.
This would generate in cash S + Pe − Ce = 30.25.

2. Invest our cash for the life of the option in the bank.
After 3 months we have 31.02 in the bank.

3. At the exercise time we buy the security at the strike
price and walk away with a profit of 31.02 − 30 = 1.02.
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Example 2

Suppose S + Pe < Ce + Ke−rT .
Let S = 31, K = 30, Ce = 3, Pe = 1, r = 10%, and T = 0.25.
Then

S + Pe = 32

Ce + Ke−rT = 32.26

1. Buy the security and the Put and sell short the Call.
This would require that we borrow S + Pe − Ce = 29.

2. After 3 months we owe the bank 29.73.

3. At the exercise time we sell the security at the strike
price and walk away with a profit of 30 − 29.73 = 0.27.
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How do you price a European option?

We will assume the underlying security

follows the lognormal random walk described earlier,

pays no dividends,

there are no transaction costs in trading the security or
the option.

There are at least two essentially equivalent ways to
determine the price of an option:

Derive and solve a partial differential equation,

Use the binomial lattice with a small ∆t.
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Binomial Lattice Approach

Assumptions:

The risk-free interest rate for both borrowing and
lending is r.

European call option expires n periods from now.

There is no arbitrage, i.e. there is no guaranteed profit
from buying or selling the security or the option.

Value of security: S(t + n∆t) = uY dn−Y S(t)

Value of option: max{S(t+n∆t)−K, 0} = (S(t+n∆t)−K)+
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Present Value

Since the option must be priced at time t, then its present
value is

(1 + r∆t)−n(S(t + n∆t) − K)+,

and thus the expected value of the call option is

C = (1 + r∆t)−nE[(uY dn−Y S(t) − K)+].

Note that in an arbitrage-free setting the probability of taking
a particular branch in the binomial lattice is affected by r.
The expected gain from purchasing the security at time t is

0 =
pu

1 + r∆t
S(t) +

(1 − p)d

1 + r∆t
S(t) − S(t),

=⇒ p =
1 + r∆t − d

u − d
.
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Example Call Pricing

S = 100, r = 0.06/12, n = 6, K = 101, µ = 0.12/12,
σ = 0.20/12
Security price lattice:

100

98.3471

101.681

96.7216

100

103.39

95.1229

98.3471

101.681

105.127

93.5507

96.7216

100

103.39

106.894

92.0044

95.1229

98.3471

101.681

105.127

108.69

90.4837

93.5507

96.7216

100

103.39

106.894

110.517

1

0.354174

0.645826

0.125439

0.457469

0.417092

0.0444271

0.243035

0.443169

0.269369

0.0157349

0.114769

0.313917

0.381613

0.173966

0.00557289

0.0508101

0.185302

0.337893

0.30807

0.112352

0.00197377

0.0215947

0.0984436

0.239346

0.327331

0.238752

0.0725596
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Example Call Pricing II

-1

-2.65285

0.680633

-4.27839

-1

2.38951

-5.87706

-2.65285

0.680633

4.12711

-7.4493

-4.27839

-1

2.38951

5.89391

-8.99556

-5.87706

-2.65285

0.680633

4.12711

7.6904

-10.5163

-7.4493

-4.27839

-1

2.38951

5.89391

9.51709

0

0

0.680633

0

0

2.38951

0

0

0.680633

4.12711

0

0

0

2.38951

5.89391

0

0

0

0.680633

4.12711

7.6904

0

0

0

0

2.38951

5.89391

9.51709

p ≈ 0.64583, u ≈ 1.01681, d ≈ 0.98347 which implies that

C ≈ 2.79499.
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Black-Scholes Formula

The Black-Scholes Formula is derived by passing to the
limit as ∆t → 0 and using the Central Limit Theorem. The
price of a European Call is

C = Sφ(w) − Ke−r(T−t)φ(w − σ
√

T − t),

where w =
1

σ
√

T − t

[

(r +
σ2

2
)(T − t) − ln(K/S)

]

,

and φ(w) =
1√
2π

∫ w

−∞
e−x2/2 dx.

Note: the European Call option price of the previous exam-

ple would be C ≈ 2.7955.
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Price of a Put

Using the Put-Call Parity Formula and the Black-Scholes
Formula together, the formula for the price of a Put should
be

P = S(φ(w) − 1) − Ke−r(T−t)(φ(w − σ
√

T − t) − 1).

Note: The prices of options do not depend on knowledge of

whether the price of the security is likely to go up or down.
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Partial Differential Equation Approach

Stochastic process governing S:

dS = (µ + σ2/2)S dt + σS
√

dt dz

Let F (S, t) be the value of a financial derivative. Apply Itô’s
Lemma.
Stochastic process governing F :

dF =

(

(µ + σ2/2)S
∂F

∂S
+

1

2
σ2S2∂2F

∂S2
+

∂F

∂t

)

dt+σS
∂F

∂S

√
dt dz.

Eliminate the stochastic part. Create a portfolio consisting
of the security and the derivative.

P = F − ∆S
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Portfolio

−∆ is a fractional number of units of the security in the
portfolio.
Stochastic process governing the portfolio:

dP = dF − ∆ dS

=

[

(µ + σ2/2)S

(

∂F

∂S
− ∆

)

+
σ2S2

2

∂2F

∂S2
+

∂F

∂t

]

dt

+σS

(

∂F

∂S
− ∆

)√
dt dz

Choose ∆ = ∂F/∂S and obtain

dP =

(

1

2
σ2S2∂2F

∂S2
+

∂F

∂t

)

dt.
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Arbitrage-free Assumption

1. Invest P in a risk-free bond at interest rate r, or

2. Invest P in the portfolio.

Difference in returns should be

0 = rP dt − dP

=⇒ rP dt =

(

1

2
σ2S2∂2F

∂S2
+

∂F

∂t

)

dt

=⇒ rF =
∂F

∂t
+ rS

∂F

∂S
+

1

2
σ2S2∂2F

∂S2
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Black-Scholes PDE

Amazingly the linear Black-Scholes PDE prices every possible
type of financial derivative. The only difference being the
boundary and final conditions we impose.
If F (S, t) is a European call option, then

Boundary conditions: F (0, t) = 0 and F (S, t) → S as
S → ∞
Final condition: F (S, T ) = (S − K)+

If F (S, t) is a European put option, then

Boundary conditions: F (0, t) = Ke−r(T−t) and
F (S, t) → 0 as S → ∞
Final condition: F (S, T ) = (K − S)+
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Change of Variables I

Through an appropriate change of variables, the
Black-Scholes PDE can be converted to the Heat Equation.

Let x = ln(S/K), τ =
1

2
σ2(T − t), F (S, t) = Kv(x, τ) .

Then
∂F

∂t
= −Kσ2

2

∂v

∂τ
,

∂F

∂S
= e−x ∂v

∂x
,

∂2F

∂S2
=

1

K
e−2x

(

∂2v

∂x2
− ∂v

∂x

)

.

Substituting in the Black-Scholes equation produces

∂v

∂τ
=

∂2v

∂x2
+ (k − 1)

∂v

∂x
− kv

where k = 2r/σ2.
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Change of Variables II

If F (S, t) describes a European call option, then the final
condition becomes an initial condition since

F (S, T ) = (S − K)+ ⇐⇒ v(x, 0) = (ex − 1)+.

Another change of variables: let α and β be constants and

v(x, τ) = eαx+βτu(x, τ),

then

vτ (x, τ) = eαx+βτ (βu(x, τ) + uτ (x, τ))

vx(x, τ) = eαx+βτ (αu(x, τ) + ux(x, τ))

vxx(x, τ) = eαx+βτ (α2u(x, τ) + 2αux(x, τ) + uxx(x, τ))
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Change of Variables III

Substitute into the previous PDE and we obtain,

uτ = uxx + (2α + k − 1)ux + (α2 − β + (k − 1)α − k)u.

Let α = (1 − k)/2 and β = −(1 + k)2/4 and we have the Heat
Equation

uτ = uxx

(IC) u(x, 0) = (e(k+1)x/2 − e(k−1)x/2)+
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Dirac Delta Function

δ(x) is not a function in the ordinary sense, but belongs to a
class of “generalized functions”.

δ(x) = lim
ε→0







1

2ε
if −ε < x < ε,

0 otherwise.
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Properties of δ(x)

1. δ(x) = 0 for all x 6= 0.

2.
∫ ∞

−∞
δ(x) dx = 1

3. If f(x) is continuous at x = 0 then
∫ ∞

−∞
δ(x)f(x) dx = f(0)
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Fundamental Solution

Initial value problem:

uτ = uxx for −∞ < x < ∞, τ > 0

u(x, 0) = δ(x) for −∞ < x < ∞
lim

|x|→∞
u(x, τ) = 0 for τ > 0

Let z = x/
√

τ and suppose u(x, τ) = τ−1/2V (z).

uτ = −1

2
τ−3/2

(

V (z) + zV ′(z)
)

uxx = τ−3/2V ′′(z)

Thus the IVP becomes

V ′′(z) +
1

2
(zV (z))′ = 0.
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Integration

Integrating once yields

V ′(z) +
z

2
V (z) = C

where C is a constant. Integrate once again with the aid of
the integrating factor e−z2/4 to obtain

V (z) = Ce−z2/4

∫

e−s2/4 ds + De−z2/4.

Choose C = 0, then

u(x, τ) =
D√
τ
e−x2/(4τ).
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Normalization

Normalize the solution using the result that
∫ ∞

−∞
e−x2/(4τ) dx = 2

√
πτ hence,

u(x, τ) =
1

2
√

πτ
e−x2/(4τ).

Note: Think of an infinitely long insulated rod initially contain-

ing one unit of heat concentrated at the origin.
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Visualization of Fundamental Solution
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Superposition of Solutions

Now consider the heat equation with more general initial
data:

uτ = uxx for −∞ < x < ∞, τ > 0

u(x, 0) = u0(x) for −∞ < x < ∞
lim

|x|→∞
u(x, τ) = 0 for τ > 0.

The Dirac delta function has the property,

u0(x) =

∫ ∞

−∞
u0(s)δ(s − x) ds.
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Solution for General ICs

The heat equation is linear so superposition of solutions
holds. Note that

u0(s)
1

2
√

πτ
e−(s−x)2/(4τ)

solves the heat equation with initial condition u0(s)δ(s − x).
Thus the solution to the heat equation,

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(s)e

−(s−x)2/(4τ) ds,

satisfies the initial condition

u(x, 0) =

∫ ∞

−∞
u0(s)δ(s − x) ds = u0(x).
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Let z = (s − x)/
√

2τ and then

u(x, τ) =
1

2
√

πτ

∫ ∞

−∞
u0(x + z

√
2τ)e−z2/2

√
2τ dz

=
1√
2π

∫ ∞

−∞

(

e(k+1)(x+z
√

2τ)/2

−e(k−1)(x+z
√

2τ)/2
)+

e−z2/2 dz

=
1√
2π

∫ ∞

−x/
√

2τ

(

e(k+1)(x+z
√

2τ)/2

−e(k−1)(x+z
√

2τ)/2
)

e−z2/2 dz

= I1 − I2
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I1 Derivation

I1 =
1√
2π

∫ ∞

−x/
√

2τ
e(k+1)(x+z

√
2τ)/2e−z2/2 dz

=
e(k+1)x/2

√
2τ

∫ ∞

−x/
√

2τ
e−(z2−z(k+1)

√
2τ)/2 dz

=
e(k+1)x/2

√
2τ

∫ ∞

−x/
√

2τ
e(k+1)2τ/4e−(z2−(k+1)

√
τ/2)2/2 dz

=
e(k+1)x/2+(k+1)2τ/4

√
2τ

∫ ∞

−x/
√

2τ−(k+1)
√

τ/2
e−y2/2 dy

= e(k+1)x/2+(k+1)2τ/4φ(w)
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I2 Derivation

Where

φ(z) =
1√
2τ

∫ z

−∞
e−η2/2 dη

and w =
x√
2τ

+
1

2
(k + 1)

√
2τ

Similarly we can derive

I2 = e(k−1)x/2+(k−1)2τ/4φ(w −
√

2τ).
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Change of Variables Redux

Now we must undo all the changes of variables.

u(x, τ) = e(k+1)x/2+(k+1)2τ/4φ(w)

−e(k−1)x/2+(k−1)2τ/4φ(w −
√

2τ)

v(x, τ) = e−(k−1)x/2−(k+1)2τ/4u(x, τ)

= exφ(w) − e−kτφ(w −
√

2τ)

v(S, t) =
S

K
φ(w) − e−r(T−t)φ(w − σ

√
T − t)

C(S, t) = Kv(S, t)

= Sφ(w) − Ke−r(T−t)φ(w − σ
√

T − t)

where w =
1

σ
√

T − t

[

(r +
σ2

2
)(T − t) + ln(S/K)

]

.
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Sensitivity of Option Prices
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Time Dependency of Option Prices
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Are these prices real . . .

. . . or do arbitrage opportunities exist?

Black and Scholes (1972) showed option prices can
deviate from those given in their formula, but the profit
was eliminated when transaction costs were
considered.

Galai (1977) confirmed that 1% transaction costs
eliminate excess profit.

Bhattacharya (1983) also confirmed.

MacBeth and Merville (1979) observed systematic
deviations of prices for long time to expiration and
options way in- or way out-of-the-money.
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American Options

Recall:

A European Option, if exercised at all, can only be
exercised at time t = T .

An American Option, if exercised at all, can be
exercised for any 0 ≤ t ≤ T .

Consequences: In an arbitrage-free setting

1. Ca ≥ Ce and Pa ≥ Pe

2. Ca ≥ Ce ≥ S − Ke−r(T−t)

(If Ce < S − Ke−r(T−t) equivalent to K < (S − Ce)e
r(T−t),

the profit from shorting the security, purchasing the call, and

investing the balance from the exercise time t until expiry T .)
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Early Exercise

Claim: For a non-dividend paying security, early exercise of
an American call is never advantageous.
By the previous result

Ca ≥ S − Ke−r(T−t) > S − K,

if the option is exercised at t < T . Thus Ca + K > S, i.e. the
American call and a cash amount K is worth more than the
stock just purchased.

Consequently Ca = Ce for non-dividend paying securities.
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American Put-Call “Parity”

For American options an inequality is satisfied,

S − K ≤ Ca − Pa ≤ S − Ke−r(T−t).

If S − K > Ca − Pa, short S, sell Pa, buy Ca, invest the
proceeds at interest rate r. If the owner of the put exercises
at time t, the net gain is

(S + Pa − Ca)e
rt − K > (S + Pa − Ca − K)ert > 0.

Since Ca = Ce for a non-dividend paying security and

Pa ≥ Pe then the other inequality is a consequence of the

European put-call parity formula.
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Closing Thoughts

1. Dividend paying securities

2. Pricing of American options

3. Time-varying µ, σ, r

4. Development of a calculus-free course
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