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Background

We have already seen that the limiting behavior of a discrete
random walk yields a derivation of the normal probability
density function.

Today we explore some further properties of the discrete
random walk and introduce the concept of stochastic
processes.
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First Step Analysis

Assumptions:
Current value of security is S(0).
At each “tick” of a clock S may change by ±1.
P (S(n + 1) = S(n) + 1) = 1/2 and
P (S(n + 1) = S(n)− 1) = 1/2.

If Xi =

{
+1 with probability 1/2,
−1 with probability 1/2

then

S(N) = S(0) + X1 + X2 + · · ·+ XN
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Further Assumptions

Xi and Xj are independent when i 6= j .
Out of n random selections X = +1, k times.

Then
S(n) = S(0) + k − (n − k) = S(0) + 2k − n

and

P (S(n) = S(0) + 2k − n) =

(
n
k

)(
1
2

)n

.
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Spatial Homogeneity

Define T (i) = S(i)− S(0) for i = 0,1, . . . ,n then
T (0) = 0,
S(n) = S(0) + 2k − n if and only if T (n) = 2k − n.

Question: what states can be visited in n steps?

Lemma
For the random walk S(i) with initial state S(0) = 0,

1 P (S(n) = m) = 0 if |m| > n,
2 P (S(n) = m) = 0 if n + m is odd,
3 P (S(n) = m) =

( n
(n+m)/2

) (1
2

)n
, otherwise.
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Mean and Variance of Random Walk (1 of 2)

Theorem
For the random walk S(i) with initial state S(0) = 0,

E [S(n)] = 0 and Var (S(n)) = n.
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Mean and Variance of Random Walk (2 of 2)

Proof.

E [S(n)] = E [S(0)] + E [X1] + E [X2] + · · ·+ E [Xn]

= 0

since E [Xi ] = 0 for i = 1,2, . . . ,n. If Xi and Xj are independent
when i 6= j we have

Var (S(n)) = Var (S(0)) +
n∑

i=1

Var (Xi) = n.
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Reflections of Random Walks (1 of 2)

Consider a random walk for which S(k) = 0 for some k .

j

SH0L

A

-A

SHjL
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Reflections of Random Walks (2 of 2)

If S(k) = 0 then define another random walk Ŝ(j) by

Ŝ(j) =

{
S(j) for j = 0,1, . . . , k
−S(j) for j = k + 1, k + 2, . . . ,n.

Since UP/DOWN steps occur with equal probability,

P (S(n) = A) = P
(

Ŝ(n) = −A
)
.
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Markov Property

Random walks have no “memory” of how they arrive at a
particular state. Only the current state influences the next state.

P (S(n) = A) = P
(

Ŝ(n) = −A
)

P (S(k) = 0) P (T (n − k) = A) = P
(

Ŝ(k) = 0
)

P
(

T̂ (n − k) = −A
)

= P (S(k) = 0) P
(

T̂ (n − k) = −A
)

P (T (n − k) = A) = P
(

T̂ (n − k) = −A
)
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A Result

Theorem
If {S(j)}nj=0 is an unbiased random walk with initial state
S(0) = i and if |A− i | ≤ n and |A + i | ≤ n then

P (S(n) = A |S(0) = i) = P (S(n) = −A |S(0) = i) .

These probabilities are 0 if n + A− i is odd (and consequently
n − A− i is odd).
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Absorbing Boundary Conditions

Remark: so far we have considered only random walks which
were free to wander unrestricted.

What if there is a state A such that if S(k) = A then S(n) = A
for all n ≥ k? Such a state is called an absorbing boundary
condition.

Example
A gambler going broke and unable to borrow money has
encountered an absorbing boundary condition.

J. Robert Buchanan Brownian Motion
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Questions

Suppose random walk S(i) has an absorbing boundary
condition at 0. If 0 < S(0) < A,

1 what is the probability that the state of the random walk
crosses the threshold value of A before it hits the boundary
at 0?

2 what is the expected value of the number of steps which
will elapse before the state of the random variable first
crosses the A threshold?
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Answer to First Question (1 of 2)

Define Smin(n) = min{S(k) : 0 ≤ k ≤ n} which can be thought
of as the smallest value the random walk takes on.

The probability the state of the random walk crosses the
threshold value of A before it hits the boundary at 0 is then

P (S(n) = A ∧ Smin(n) > 0 |S(0) = i) .

J. Robert Buchanan Brownian Motion



Answer to First Question (2 of 2)

Lemma

Suppose a random walk S(k) = S(0) +
∑k

i=1 Xi in which the Xi
for i = 1,2, . . . are independent, identically distributed random
variables taking on the values ±1, each with probability
p = 1/2. Suppose further that the boundary at 0 is absorbing,
then if A, i > 0,

fA,i(n) = P (S(n) = A ∧ Smin(n) > 0 |S(0) = i)

=

[(
n

(n + A− i)/2

)
−
(

n
(n − A− i)/2

)](
1
2

)n

,

provided |A− i | ≤ n, |A + i | ≤ n, and n + A− i is even.
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Proof (1 of 3)

Consider a random walk with no boundary, that is, the random
variable S(n) has an initial state of S(0) = i > 0 and S(k) is
allowed to wander into negative territory (and back) arbitrarily.
In this situation

P (S(n) = A |S(0) = i)
= P (S(n) = A ∧ Smin(n) > 0 |S(0) = i)

+ P (S(n) = A ∧ Smin(n) ≤ 0 |S(0) = i)

by the Addition Rule.

J. Robert Buchanan Brownian Motion



Proof (2 of 3)

Now consider the probability on the left-hand side of the
equation.

P (S(n) = A |S(0) = i)

It possesses no boundary condition and by the spatial
homogeneity of the random walk

P (S(n) = A |S(0) = i) = P (T (n) = A− i)

where {T (j)}nj=0 is an unbiased random walk with initial state
T (0) = 0. Hence P (T (n) = A− i) = 0 unless n + A− i is even
and |A− i | ≤ n, in which case

P (S(n) = A |S(0) = i) =

(
n

(n + A− i)/2

)(
1
2

)n

.
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Proof (3 of 3)

On the other hand if the random walk starts at a positive state i
and finishes at −A < 0 then it is certain that Smin(n) ≤ 0.
Consequently

P (S(n) = A ∧ Smin(n) ≤ 0 |S(0) = i) = P (S(n) = −A |S(0) = i)

=

(
n

(n − A− i)/2

)(
1
2

)n

provided |A + i | ≤ n and n − A− i is even. Finally

P (S(n) = A ∧ Smin(n) > 0 |S(0) = i)

=

(
n

(n + A− i)/2

)(
1
2

)n

−
(

n
(n − A− i)/2

)(
1
2

)n

.
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Example

Example

For an unbiased random walk with initial state S(0) = 10, what
is the probability that S(50) = 16 and S(n) > 0 for
n = 0,1, . . . ,50?

f16,10(50) = P (S(50) = 16 ∧m50 > 0 |S(0) = 10)

=

[(
50
28

)
−
(

50
12

)]
2−50

≈ 0.0787178
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Stopping Times

Define ΩA = min{n |S(n) = A} which is the first time that the
random walk S(n) = A. This is called the stopping time.

Suppose A = 0, then Ω0 = n if and only if S(0) = i > 0,
S(n − 1) = 1, mn−1 > 0 and Xn = −1.

P (Ω0 = n |S(0) = i)
= P (Xn = −1 ∧ S(n − 1) = 1 ∧mn−1 > 0 |S(0) = i)

=
1
2

P (S(n − 1) = 1 ∧mn−1 > 0 |S(0) = i)

=
1
2

f1,i(n − 1).

Thus by spatial homogeneity

P (ΩA = n |S(0) = i) =
1
2

f1,(i−A)(n − 1)
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Paths

We can analyze the stopping time by think of the random walk
as having two boundaries, one at 0 and another at A.

pi→A: any random walk {S(j)} in the discrete interval
[0,A] starting at i > 0, terminating at A, and which
avoids 0.

Ppi→A : the probability that the random walk starting at
S(0) = i follows pi→A.

PA(i): the probability that a random walk which starts at
S(0) = i will achieve state S = A while avoiding
the state S = 0.
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Determination of PA(i)

PA(i) =
∑
pi→A

Ppi→A

= P (S(1) = i − 1 |S(0) = i)PA(i − 1)

+ P (S(1) = i + 1 |S(0) = i)PA(i + 1)

=
1
2
PA(i − 1) +

1
2
PA(i + 1)

This implies

PA(i − 1)− 2PA(i) + PA(i + 1) = 0.
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Probability of Exiting

Theorem

Suppose S(k) = S(0) +
∑k

i=1 Xi where the Xi for i = 1,2, . . .
are independent, identically distributed random variables taking
on the values ±1, each with probability p = 1/2. Suppose
further that the boundaries at 0 and A are absorbing, then if
0 ≤ S(0) = i ≤ A

1 the probability that the random walk achieves state A
without achieving state 0 is PA(i) = i/A,

2 the probability that the random walk achieves state 0
without achieving state A is P0(i) = 1− i/A.

J. Robert Buchanan Brownian Motion



Proof

Suppose PA(i) = α + βi where α and β are constants.
Substituting into the difference equation yields

α + β(i − 1)− 2(α + βi) + α + β(i + 1) = 0

so PA(i) solves the difference equation.

Since PA(0) = 0, then α = 0.

Since PA(A) = 1, then β = 1/A.

Consequently PA(i) = i/A.
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Simpler Question

Question: what is the expected exit time through either
boundary A > 0 or 0?

We make the following definitions:
B: the set of boundary points, B = {0,A}.

ωpi→B : the exit time of the random walk which starts at
S(0) = i , where 0 ≤ i ≤ A and which follows path
pi→B.

ΩB(i): the expected value of the exit time for a random
walk which starts at S(0) = i , where 0 ≤ i ≤ A.

J. Robert Buchanan Brownian Motion
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Simple Answer

ΩB(i) =
∑
pi→B

Ppi→Bωpi→B

=
1
2

(1 + ΩB(i − 1)) +
1
2

(1 + ΩB(i + 1))

Since the path from i → B can be decomposed into paths from
(i − 1)→ B and (i + 1)→ B with the addition of a single step,
the expected value of the exit time of a random walk starting at
i is one more than the expected value of a random walk starting
at i ± 1.
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System of Equations

ΩB(i − 1)− 2ΩB(i) + ΩB(i + 1) = −2

for i = 1,2, . . . ,A− 1, while ΩB(0) = 0 = ΩB(A).

Try a solution of the form ΩB(i) = ai2 + bi + c and determine
the coefficients a, b, and c.
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A Result

Theorem

Suppose S(k) = S(0) +
∑k

i=1 Xi where the Xi for i = 1,2, . . .
are independent, identically distributed random variables taking
on the values ±1, each with probability p = 1/2. Suppose
further that the boundaries at 0 and A are absorbing, then if
0 ≤ S(0) = i ≤ A the random walk intersects the boundary
(S = 0 or S = A) after a mean number of steps given by the
formula

ΩB(i) = i(A− i).
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Example

Example
Suppose an unbiased random walk takes place on the discrete
interval {0,1,2, . . . ,10} for which the boundaries at 0 and 10
are absorbing. As a function of the initial condition i , find the
expected value of the exit time.

i 0 1 2 3 4 5 6 7 8 9 10
ΩB(i) 0 9 16 21 24 25 24 21 16 9 0
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Main Question: Conditional Exit Time

Remark: now we are in a position to answer the original
question of the determining the expected value of the exit time
for a random walk which exits through state A while avoiding
the absorbing boundary at 0.

ΩA(i) =

∑
pi→A

Ppi→Aωpi→A∑
pi→A

Ppi→A

=

∑
pi→A

Ppi→Aωpi→A

PA(i)
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Decomposing the Walk (1 of 2)

ΩA(i) = 1 +
1
2ΩA(i − 1)PA(i − 1) + 1

2ΩA(i + 1)PA(i + 1)

PA(i)

= PA(i) +
1
2

ΩA(i − 1)PA(i − 1) +
1
2

ΩA(i + 1)PA(i + 1)

ΩA(i)
i
A

=
i
A

+
i − 1
2A

ΩA(i − 1) +
i + 1
2A

ΩA(i + 1)

2iΩA(i) = 2i + (i − 1)ΩA(i − 1) + (i + 1)ΩA(i + 1)
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Decomposing the Walk (2 of 2)

The last equation is equivalent to

(i − 1)ΩA(i − 1)− 2iΩA(i) + (i + 1)ΩA(i + 1) = −2i .

Assuming ΩA(i) = ai2 + bi + c, determine the coefficients a, b,
and c.
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Conditional Exit Time

Theorem

Suppose S(k) = S(0) +
∑k

i=1 Xi where the Xi for i = 1,2, . . .
are independent, identically distributed random variables taking
on the values ±1, each with probability p = 1/2. Suppose
further that the boundary at 0 is absorbing. The random walk
that avoids state 0 will stop the first time that S(n) = A. The
expected value of the stopping time is

ΩA(i) =
1
3

(
A2 − i2

)
, for i = 1,2, . . . ,A.

Remark: If the random walk starts in state 0, since this state is
absorbing the expected value of the exit time is infinity.
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Example

Example
Suppose an unbiased random walk takes place on the discrete
interval {0,1,2, . . . ,10} for which the boundary at 0 is
absorbing. As a function of the initial condition i , find the
expected value of the conditional exit time through state 10.

i 1 2 3 4 5 6 7 8 9 10
Ω10(i) 33 32 91

3 28 25 64
3 17 12 19

3 0
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Stochastic Processes

Now we begin the development of continuous random walks by
taking a limit of the previous discrete random walks.

Assumptions:
S(0) = 0.
n independent steps take place equally spaced in time
interval [0, t ].
Probability of a step to the left/right is 1/2.
Size of a step is

√
t/n.

Find E [S(t)] and Var (S(t)).

J. Robert Buchanan Brownian Motion
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Illustration

t
k

SHkL
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Brownian Motion/Wiener Process

The continuous limit of this random walk is denoted W (t) and is
called a Wiener process.

1 W (t) is a continuous function of t ,
2 W (0) = 0 with probability one,
3 Spatial homogeneity: if W0(t) represents a Wiener process

for which the initial state is 0 and if Wx (t) represents a
Wiener process for which the initial state is x , then
Wx (t) = x + W0(t).

4 Markov property: for 0 < s < t the conditional distribution
of W (t) depends on the value of W (s) + W (t − s).

5 For each t , W (t) is normally distributed with mean zero
and variance t ,

6 The changes in W in non-overlapping intervals of t are
independent random variables with means of zero and
variances equal to the lengths of the time intervals.

J. Robert Buchanan Brownian Motion
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More Properties

Suppose 0 ≤ t1 < t2 and define ∆W[t1,t2] = W (t2)−W (t1).

Var
(
∆W[t1,t2]

)
= E

[
(W (t2)−W (t1))2

]
− E [W (t2)−W (t1)]2

= E
[
(W (t2))2

]
+ E

[
(W (t1))2

]
− 2E [W (t1)W (t2)]

= t2 + t1 − 2E [W (t1)(W (t2)−W (t1) + W (t1))]

= t2 + t1 − 2E [W (t1)(W (t2)−W (t1))]

− 2E
[
(W (t1))2

]
= t2 + t1 − 2t1
= t2 − t1.
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Differential Wiener Process

We have seen that for 0 ≤ t1 < t2,

Var (∆W ) = E
[
(∆W )2

]
= ∆t .

This is also true in the limit as ∆t becomes small, thus we write

(dW (t))2 = dt .

Theorem
The derivative dW/dt does not exist for any t.
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Proof

Recall the limit definition of the derivative from calculus,

df
dt

= lim
h→0

f (s + h)− f (s)

h
.

Suppose f (t) is a Wiener process W (t). Since

E
[
(W (s + h)−W (s))2

]
= E

[
|W (s + h)−W (s)|2

]
= h

then on average |W (s + h)−W (s)| ≈
√

h, and therefore

lim
h→0

W (s + h)−W (s)

h
does not exist.
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Integral of a Wiener Process

The stochastic integral of f (x) on the interval [0, t ] is defined
to be

Z (t)− Z (0) =

∫ t

0
f (τ) dW (τ)

= lim
n→∞

n∑
k=1

f (tk−1) (W (tk )−W (tk−1))

where tk = kt/n.

Note: The function f is evaluated at the left-hand endpoint of
each subinterval.

The stochastic integral is equivalent to its differential form

dZ = f (t) dW (t)
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ODE: Exponential Growth

If P(0) = P0 and the rate of change of P is proportional to P,
then

dP
dt

= µP,

and P(t) = P0eµt .

If we let Z = ln P then the ODE becomes

dZ = µdt .
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Stochastic Differential Equation (SDE)

Perturb dZ by adding a Wiener process with mean zero and
standard deviation σ

√
dt .

dZ = µdt + σ dW (t)

This is a generalized Wiener process. The constant µ is
called the drift and the constant σ is called the volatility. The
solution to the SDE is

Z (t) = Z (0) + µt +

∫ t

0
σ dW (τ).
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Expectation and Variance

E [Z (t)− Z (0)] = µt
Var (Z (t)− Z (0)) = σ2t

In terms of numerical approximation,∫ t

0
dW (τ) ≈

n∑
j=1

Xj

where Xj is a normal random variable with mean 0 and
variance t/n.
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Example

Example
Suppose the drift parameter is µ = 1 and the volatility is
σ = 1/4, then the expected value of the Wiener process is t
and the standard deviation is

√
t/4.
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Example

Example

Suppose the drift parameter is µ = 1/4 and the volatility is
σ = 1, then the expected value of the Wiener process is t/4
and the standard deviation is

√
t .
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Simple Generalization

If the drift and volatility are functions of t then

dZ = µ(t) dt + σ(t) dW (t).

and

Z (t) = Z (0) +

∫ t

0
µ(τ) dτ +

∫ t

0
σ(τ) dW (τ).
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Itô Processes

A stochastic process of the form

dS = a(S, t) dt + b(S, t) dW (t)

is called an Itô process.

We will shortly be called upon to develop new stochastic
processes which are functions of S. Suppose Z = ln S, then
dZ = dS/S (by the chain rule), but are the following two
stochastic processes equivalent?

dS = µS dt + σS dW (t)
dZ = µdt + σ dW (t)
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Discussion

dS = µS dt + σS dW (t)
dZ = µdt + σ dW (t)

µS → 0 and σS → 0 as S → 0+.

First equation makes a suitable mathematical model for a
stock price S ≥ 0, in second equation Z could go negative.
Second equation can be integrated, first cannot.
The two equations are not equivalent because the chain
rule does not apply to functions of stochastic quantities.
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Itô’s Lemma

Lemma (Itô’s Lemma)
Suppose that the random variable X is described by the Itô
process

dX = a(X , t) dt + b(X , t) dW (t)

where dW (t) is a normal random variable. Suppose the
random variable Y = F (X , t). Then Y is described by the
following Itô process.

dY =

(
a(X , t)FX + Ft +

1
2

(b(X , t))2FXX

)
dt + b(X , t)FX dW (t)
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Multivariable Form of Taylor’s Theorem (1 of 3)

If f (x) is an (n + 1)-times differentiable function on an open
interval containing x0 then the function may be written as

f (x) = f (x0) + f ′(x0)(x − x0) +
f ′′(x0)

2!
(x − x0)2 (1)

+ · · ·+ f (n)(x0)

n!
(x − x0)n +

f (n+1)(θ)

(n + 1)!
(x − x0)n+1

The last term above is usually called the Taylor remainder
formula and is denoted by Rn+1. The quantity θ lies between x
and x0. The other terms form a polynomial in x of degree at
most n and can be used as an approximation for f (x) in a
neighborhood of x0.
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Multivariable Form of Taylor’s Theorem (2 of 3)

Suppose the function F (y , z) has partial derivatives up to order
three on an open disk containing the point with coordinates
(y0, z0). Define the function f (x) = F (y0 + xh, z0 + xk) where h
and k are chosen small enough that (y0 + h, z0 + k) lie within
the disk surrounding (y0, z0). Since f is a function of a single
variable then we can use the single-variable form of Taylor’s
formula in Eq. (1) with x0 = 0 and x = 1 to write

f (1) = f (0) + f ′(0) +
1
2

f ′′(0) + R3. (2)

Using the multivariable chain rule for derivatives we have, upon
differentiating f (x) and setting x = 0,

f ′(0) = hFy (y0, z0) + kFz(y0, z0) (3)
f ′′(0) = h2Fyy (y0, z0) + 2hkFyz(y0, z0) + k2Fzz(y0, z0). (4)
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Multivariable Form of Taylor’s Theorem (3 of 3)

We have made use of the fact that Fyz = Fzy for this function
under the smoothness assumptions. The remainder term R3
contains only third order partial derivatives of F evaluated
somewhere on the line connecting the points (y0, z0) and
(y0 + h, z0 + k). Thus if we substitute Eqs. (3) and (4) into (2)
we obtain

∆F = f (1)− f (0) (5)
= F (y0 + h, z0 + k)− F (y0, z0)

= R3 + hFy (y0, z0) + kFz(y0, z0)

+
1
2

(
h2Fyy (y0, z0) + 2hkFyz(y0, z0) + k2Fzz(y0, z0)

)
.

This last equation can be used to derive Itô’s Lemma.
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Proof (1 of 3)

Let X be a random variable described by an Itô process of the
form

dX = a(X , t) dt + b(X , t) dW (t) (6)

where dW (t) is a normal random variable and a and b are
functions of X and t . Let Y = F (X , t) be another random
variable defined as a function of X and t . Given the Itô process
which describes X we will now determine the Itô process which
describes Y .
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Proof (2 of 3)

Using a Taylor series expansion for Y detailed in (5) we find

∆Y = FX ∆X + Ft ∆t +
1
2

FXX (∆X )2 + FXt ∆X∆t

+
1
2

Ftt (∆t)2 + R3

= FX (a∆t + b dW (t)) + Ft ∆t +
1
2

FXX (a∆t + b dW (t))2

+ FXt (a∆t + b dW (t))∆t +
1
2

Ftt (∆t)2 + R3.
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Proof (3 of 3)

Upon simplifying, the expression ∆X has been replaced by the
discrete version of the Itô process. Thus as ∆t becomes small

∆Y ≈ FX (a dt + b dW (t)) + Ft dt +
1
2!

FXX b2(dW (t))2.

Using the relationship (dW (t))2 = dt

∆Y ≈ FX (a dt + b dW (t)) + Ft dt +
1
2!

FXX b2 dt . (7)
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Examples (1 of 2)

Example
If Z = ln S and

dS = µS dt + σS dW (t),

find the stochastic process followed by Z .

If Z = ln S then

dZ =

(
µS
[

1
S

]
+ 0 +

1
2
σ2S2

[
− 1

S2

])
dt + σS

(
1
S

)
dW (t)

=

(
µ− σ2

2

)
dt + σ dW (t)
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Examples (2 of 2)

Example

If S = eZ and
dZ = µdt + σ dW (t),

find the stochastic process followed by S.

If S = eZ then

dS =

(
µ
[
eZ
]

+ 0 +
1
2
σ2
[
eZ
])

dt + σ
(

eZ
)

dW (t)

=

(
µ+

σ2

2

)
S dt + σS dW (t)
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Stock Example (1 of 2)

Suppose we collect stock prices for n + 1 days:
{S(0),S(1), . . . ,S(n)}.

Under the lognormal assumption Z (i) = ln S(i + 1)/S(i) is
a normal random variable.
If the mean (drift) and variance (volatility squared) of Z are
µ and σ2 respectively, then

dZ = µdt + σ dW (t).
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Stock Example (2 of 2)

Hence

Z (t) = Z (0) + µt +

∫ t

0
σ dW (τ)

and
S(t) = S(0)eµt+

R t
0 σ dW (τ).

The mean and variance of S(t) are

E [S(t)] = S(0)e(µ+σ2/2)t

Var (S(t)) = (S(0))2e(2µ+σ2)t
(

eσ
2t − 1

)
.
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