Measures of Position
MATH 130, *Elements of Statistics I*

J. Robert Buchanan

Department of Mathematics

Fall 2019
A **measure of position** gives you some idea of

1. where particular data values would rank in an ordering of a data set, or

2. where a data value falls with respect to the mean of the sample or population.
z-Scores

Definition
The \textbf{z-score} represents the distance that a data value is from the mean in terms of standard deviations.

Population z-score: \[z = \frac{x - \mu}{\sigma} \]

Sample z-score: \[z = \frac{x - \bar{x}}{s} \]

The z-score has no units. It has a mean of 0 and a standard deviation of 1.
Example

Consider the data:

\[
\begin{array}{ccccccccccc}
3 & 4 & 5 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 7 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
8 & 8 & 8 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 12 & 12 & 12 & 12 & 12 \\
12 & 12 & 12 & 13 & 13 & 13 & 15 & 17 & 18 & 18 &
\end{array}
\]

We can calculate $\mu = 9.5$ and $\sigma = 3.1$.

Example

Consider the data:

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

We can calculate $\mu = 9.5$ and $\sigma = 3.1$. Thus the z-score corresponding to a data value of 11 is

$$z = \frac{11 - 9.5}{3.1} = 0.48.$$
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the z-scores corresponding to

1. $x = 7$

$z = \frac{x - \mu}{\sigma} = \frac{7 - 9.5}{3.1} = -\frac{2}{3.1}$

$z = -0.65$ (rounded to two decimal places)

2. $x = 13$

$z = \frac{x - \mu}{\sigma} = \frac{13 - 9.5}{3.1} = 1.13$ (rounded to two decimal places)

3. $x = 20$

$z = \frac{x - \mu}{\sigma} = \frac{20 - 9.5}{3.1} = 3.29$ (rounded to two decimal places)
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the z-scores corresponding to

1. $x = 7$

$$ z = \frac{7 - 9.5}{3.1} = \frac{-2.5}{3.1} = -0.81 $$

2. $x = 13$

3. $x = 20$
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the z-scores corresponding to

1. $x = 7$

$$z = \frac{7 - 9.5}{3.1} = \frac{-2.5}{3.1} = -0.81$$

2. $x = 13$

$$z = \frac{13 - 9.5}{3.1} = \frac{3.5}{3.1} = 1.13$$

3. $x = 20$
Example

If \(\mu = 9.5 \) and \(\sigma = 3.1 \), find the z-scores corresponding to

1. \(x = 7 \)

\[
z = \frac{x - \mu}{\sigma} = \frac{7 - 9.5}{3.1} = \frac{-2.5}{3.1} = -0.81
\]

2. \(x = 13 \)

\[
z = \frac{x - \mu}{\sigma} = \frac{13 - 9.5}{3.1} = \frac{3.5}{3.1} = 1.13
\]

3. \(x = 20 \)

\[
z = \frac{x - \mu}{\sigma} = \frac{20 - 9.5}{3.1} = \frac{10.5}{3.1} = 3.39
\]
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the data values corresponding to z-scores of

1. $z = -2.0$

2. $z = 1.51$

3. $z = 2.575$
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the data values corresponding to z-scores of

1. $z = -2.0$

\[-2.0 = \frac{x - 9.5}{3.1}\]
\[x = (-2.0)(3.1) + 9.5 = 3.3\]

2. $z = 1.51$

3. $z = 2.575$
Example

If $\mu = 9.5$ and $\sigma = 3.1$, find the data values corresponding to z-scores of

1. $z = -2.0$

\[-2.0 = \frac{x - 9.5}{3.1}\]
\[x = (-2.0)(3.1) + 9.5 = 3.3\]

2. $z = 1.51$

\[1.51 = \frac{x - 9.5}{3.1} \implies x = 14.2\]

3. $z = 2.575$
Example
If $\mu = 9.5$ and $\sigma = 3.1$, find the data values corresponding to z-scores of

1. $z = -2.0$

$$-2.0 = \frac{x - 9.5}{3.1}$$

$$x = (-2.0)(3.1) + 9.5 = 3.3$$

2. $z = 1.51$

$$1.51 = \frac{x - 9.5}{3.1} \implies x = 14.2$$

3. $z = 2.575$

$$2.575 = \frac{x - 9.5}{3.1} \implies x = 17.5$$
Percentiles

Definition
The \textit{kth percentile}, denoted P_k, of a set of data divides the lower $k\%$ of a data set from the upper $(100 - k)\%$. There are 99 percentiles.
Percentiles

Definition
The *kth percentile*, denoted P_k, of a set of data divides the lower $k\%$ of a data set from the upper $(100 - k)\%$. There are 99 percentiles.

Interpretation: The data value at the 40th percentile separates the lower 40% of the data from the upper 60% of the data.
Determining the kth Percentile

1. Arrange the data in ascending order.
2. Compute an index i using the formula:

$$i = \left(\frac{k}{100} \right) (n + 1)$$

where k is the percentile and n is the number of observations in the data set.
3. If i is a whole number, the kth percentile is the ith data value. If i is not a whole number, the kth percentile is the mean of the observations on either side of i.
Example

Consider the data:

\[
\begin{array}{cccccccccccc}
3 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 7 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
8 & 8 & 8 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 12 & 12 & 12 & 12 \\
12 & 12 & 12 & 13 & 13 & 13 & 15 & 17 & 18 & 18 \\
\end{array}
\]

Find P_{23}, P_{45}, P_{75}, and P_{90}.
To find \(P_{23} \):

- Index, \(i = \left(\frac{23}{100} \right) (60 + 1) = 14.03 \) (not a whole number)
- The 14th and 15th values of the variable are respectively, 7 and 7.
- The mean of 7 and 7 is 7, thus \(P_{23} = 7 \).

To find \(P_{75} \):

- Index, \(i = \left(\frac{75}{100} \right) (60 + 1) = 45.75 \)
- The 45th and 46th values of the variable are 11, thus \(P_{75} = 11 \).
Solution

To find \(P_{23} \):

- Index, \(i = \left(\frac{23}{100} \right) (60 + 1) = 14.03 \) (not a whole number)
- The 14th and 15th values of the variable are respectively, 7 and 7.
- The mean of 7 and 7 is 7, thus \(P_{23} = 7 \).

To find \(P_{75} \):

- Index, \(i = \left(\frac{75}{100} \right) (60 + 1) = 45.75 \)
- The 45th and 46th values of the variable are 11, thus \(P_{75} = 11 \).
Finding the Percentile of a Given Data Value

1. Arrange the data in ascending order.
2. Use the following formula:

 \[\text{Percentile of } x = \frac{\text{number of data values less than } x}{n} \times 100 \]

 Round to the nearest whole number.
Example

Consider the data:

<table>
<thead>
<tr>
<th>3</th>
<th>4</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Find the percentile scores of 8, 10, 15, and 18.
Solution (1 of 2)

Percentile of 8:
\[
\frac{17}{60} \times 100 = 28.3 \approx 28
\]
In other words, \(P_{28} = 8 \).
Solution (1 of 2)

Percentile of 8:

\[
\frac{17}{60} \times 100 = 28.3 \approx 28
\]

In other words, \(P_{28} = 8 \).

Percentile of 10:

\[
\frac{30}{60} \times 100 = 50
\]

In other words, \(P_{50} = 10 \).
Solution (2 of 2)

Percentile of 15:

\[
\frac{56}{60} \times 100 = 93.3
\]

In other words, \(P_{93} = 15 \).
Solution (2 of 2)

Percentile of 15:

\[
\frac{56}{60} \times 100 = 93.3
\]

In other words, \(P_{93} = 15 \).

Percentile of 18:

\[
\frac{58}{60} \times 100 = 96.7 \approx 97
\]

In other words, \(P_{97} = 18 \).
Quartiles divide data sets into fourths.

\[Q_1 = P_{25} \]
\[Q_2 = P_{50} = M = \bar{x} \]
\[Q_3 = P_{75} \]
Example

Consider the data:

\[
\begin{array}{cccccccccc}
3 & 4 & 5 & 5 & 5 & 5 & 5 & 6 & 7 & 7 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 8 & 8 & 8 \\
8 & 8 & 8 & 9 & 9 & 9 & 9 & 9 & 9 & 9 \\
10 & 10 & 10 & 10 & 10 & 10 & 10 & 11 & 11 & 11 \\
11 & 11 & 11 & 11 & 11 & 11 & 12 & 12 & 12 & 12 \\
12 & 12 & 12 & 13 & 13 & 13 & 15 & 17 & 18 & 18 \\
\end{array}
\]

Find Q_1, Q_2, and Q_3.
Solution

\[i = \left(\frac{25}{100} \right) (60 + 1) = 15.25 \]

\[Q_1 = P_{25} = \frac{7 + 7}{2} = 7 \]

\[i = \left(\frac{50}{100} \right) (60 + 1) = 30.50 \]

\[Q_2 = P_{50} = \frac{9 + 10}{2} = 9.5 \]

\[i = \left(\frac{75}{100} \right) (60 + 1) = 45.75 \]

\[Q_3 = P_{75} = \frac{11 + 11}{2} = 11 \]
Outliers

Extreme data values are called **outliers**. We may check for them using the following procedure.

1. Determine Q_1 and Q_3.
2. Compute the **interquartile range**:
 \[\text{IQR} = Q_3 - Q_1 \]
3. Determine the **fences**:
 \[\text{lower fence} = Q_1 - 1.5(\text{IQR}) \]
 \[\text{upper fence} = Q_3 + 1.5(\text{IQR}) \]
4. An outlier is a data value smaller than the lower fence or larger than the upper fence.
Determine if there are any outliers in the following data set.

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.02</td>
<td>3.79</td>
<td>3.91</td>
<td>3.99</td>
<td>4.60</td>
<td>4.71</td>
<td>4.80</td>
<td>4.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.90</td>
<td>5.50</td>
<td>7.00</td>
<td>7.11</td>
<td>7.31</td>
<td>7.45</td>
<td>7.66</td>
<td>7.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.90</td>
<td>7.92</td>
<td>8.05</td>
<td>8.37</td>
<td>8.50</td>
<td>8.50</td>
<td>8.79</td>
<td>9.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.11</td>
<td>9.29</td>
<td>9.60</td>
<td>9.81</td>
<td>10.30</td>
<td>10.72</td>
<td>10.74</td>
<td>10.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.33</td>
<td>11.56</td>
<td>11.72</td>
<td>11.72</td>
<td>11.80</td>
<td>11.97</td>
<td>12.57</td>
<td>12.89</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hint: $Q_1 = 6.25$ and $Q_3 = 10.73$.
Solution

1. $Q_1 = 6.25$ and $Q_3 = 10.73$.
2. Interquartile range: $IQR = 10.73 - 6.25 = 4.48$.
3. Fences:

 \[
 \text{lower fence} = 6.25 - (1.5)(4.48) = -0.47 \\
 \text{upper fence} = 10.73 + (1.5)(4.48) = 17.45
 \]

4. There are no outliers in the data set.