Antiderivatives
MATH 161 *Calculus I*

J. Robert Buchanan

Department of Mathematics

Fall 2017
Motivation

Many times a mathematical description of a situation specifies the rates of change of quantities.

Example
An object initially at altitude y_0 and traveling at velocity v_0 is allowed to move under the influence of gravitational acceleration g. Find the position of the object at any time t.

\begin{align*}
\frac{d^2y}{dt^2} &= g \\
\frac{dy}{dt} &= gt + v_0 \\
y(t) &= \frac{1}{2}gt^2 + v_0t + y_0
\end{align*}
Many times a mathematical description of a situation specifies the rates of change of quantities.

Example

An object initially at altitude y_0 and traveling at velocity v_0 is allowed to move under the influence of gravitational acceleration g. Find the position of the object at any time t.

\[
\begin{align*}
y''(t) &= g \\
y'(t) &= g \, t + v_0 \\
y(t) &= \frac{1}{2} g \, t^2 + v_0 \, t + y_0
\end{align*}
\]
Remarks

- If $f(x)$ is the derivative of $F(x)$, in other words if $F'(x) = f(x)$ then $F(x)$ is called an antiderivative of $f(x)$.

Antidifferentiation can be thought of as the reverse process of differentiation. Antidifferentiation is the second major theme of calculus. Antidifferentiation can be thought of as a process of accumulation or summing.
Remarks

- If $f(x)$ is the derivative of $F(x)$, in other words if $F'(x) = f(x)$ then $F(x)$ is called an antiderivative of $f(x)$.
- **Antidifferentiation** can be thought of as the reverse process of differentiation.
Remarks

- If \(f(x) \) is the derivative of \(F(x) \), in other words if \(F'(x) = f(x) \) then \(F(x) \) is called an **antiderivative** of \(f(x) \).
- **Antidifferentiation** can be thought of as the reverse process of differentiation.
- Antidifferentiation is the second major theme of calculus.
Remarks

- If $f(x)$ is the derivative of $F(x)$, in other words if $F'(x) = f(x)$ then $F(x)$ is called an antiderivative of $f(x)$.
- **Antidifferentiation** can be thought of as the reverse process of differentiation.
- Antidifferentiation is the second major theme of calculus.
- Antidifferentiation can be thought of as a process of accumulation or summing.
Example

Find three different antiderivatives of $f(x) = x^4$.

$F_1(x) = \frac{1}{5}x^5$

$F_2(x) = \frac{1}{5}x^5 + 7$

$F_3(x) = \frac{1}{5}x^5 - \frac{1}{10}$

Infinitely many more answers are possible.
Example

Find three different antiderivatives of \(f(x) = x^4 \).

\[
F_1(x) = \frac{1}{5} x^5
\]

\[
F_2(x) = \frac{1}{5} x^5 + 7
\]

\[
F_3(x) = \frac{1}{5} x^5 - \frac{1}{10}
\]

Infinitely many more answers are possible.
Theorem

Suppose that F and G are both antiderivatives of f on interval I. Then $F(x) = G(x) + C$ for some constant C.

Remark: we proved this earlier in the section on the Mean Value Theorem.
Definition
Let F be any antiderivative of f. The **indefinite integral** of $f(x)$ with respect to x is defined by

$$\int f(x) \, dx = F(x) + C$$

where C is called the **constant of integration**.
Examples

Find the indefinite integrals of the following functions.

✈️ \(f(x) = e^x \)

✈️ \(g(x) = \frac{1}{x} \text{ for } x > 0 \)

✈️ \(h(x) = \cos x \)

✈️ \(k(x) = \frac{1}{1 + x^2} \)
Examples

Find the indefinite integrals of the following functions.

- $f(x) = \int e^x \, dx = e^x + C$

- $g(x) = \frac{1}{x}$ for $x > 0$

- $h(x) = \cos x$

- $k(x) = \frac{1}{1 + x^2}$
Examples

Find the indefinite integrals of the following functions.

- $f(x) = e^x$
 \[\int e^x \, dx = e^x + C \]

- $g(x) = \frac{1}{x}$ for $x > 0$
 \[\int \frac{1}{x} \, dx = \ln x + C \]

- $h(x) = \cos x$

- $k(x) = \frac{1}{1 + x^2}$
Examples

Find the indefinite integrals of the following functions.

- $f(x) = e^x$
 \[\int e^x \, dx = e^x + C \]

- $g(x) = \frac{1}{x}$ for $x > 0$
 \[\int \frac{1}{x} \, dx = \ln x + C \]

- $h(x) = \cos x$
 \[\int \cos x \, dx = \sin x + C \]

- $k(x) = \frac{1}{1 + x^2}$
Examples

Find the indefinite integrals of the following functions.

- $f(x) = e^x$
 \[
 \int e^x \, dx = e^x + C
 \]

- $g(x) = \frac{1}{x}$ for $x > 0$
 \[
 \int \frac{1}{x} \, dx = \ln x + C
 \]

- $h(x) = \cos x$
 \[
 \int \cos x \, dx = \sin x + C
 \]

- $k(x) = \frac{1}{1 + x^2}$
 \[
 \int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C
 \]
Theorem (Power Rule)

For any rational number $r \neq -1$,

$$\int x^r \, dx = \frac{1}{r+1} x^{r+1} + C.$$
Examples

Find the indefinite integrals of the following functions.

- \(f(x) = x^6 \)
 \[
 \int x^6 \, dx = \frac{1}{7}x^7 + C
 \]

- \(g(x) = \frac{1}{x^2} \)
 \[
 \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = -\frac{1}{x} + C
 \]

- \(h(x) = x^{1/2} \)
 \[
 \int x^{1/2} \, dx = \frac{2}{3}x^{3/2} + C
 \]

- \(k(x) = x^{-1/3} \)
 \[
 \int x^{-1/3} \, dx = \frac{3}{2}x^{2/3} + C
 \]
Examples

Find the indefinite integrals of the following functions.

- $f(x) = x^6$
 \[
 \int x^6 \, dx = \frac{1}{7}x^7 + C
 \]

- $g(x) = \frac{1}{x^2}$

- $h(x) = x^{1/2}$

- $k(x) = x^{-1/3}$
Examples

Find the indefinite integrals of the following functions.

- \(f(x) = x^6 \)
 \[
 \int x^6 \, dx = \frac{1}{7}x^7 + C
 \]

- \(g(x) = \frac{1}{x^2} \)
 \[
 \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{1}{-1}x^{-1} + C = -\frac{1}{x} + C
 \]

- \(h(x) = x^{1/2} \)

- \(k(x) = x^{-1/3} \)
Examples

Find the indefinite integrals of the following functions.

- $f(x) = x^6$
 \[
 \int x^6 \, dx = \frac{1}{7}x^7 + C
 \]

- $g(x) = \frac{1}{x^2}$
 \[
 \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{1}{-1}x^{-1} + C = -\frac{1}{x} + C
 \]

- $h(x) = x^{1/2}$
 \[
 \int x^{1/2} \, dx = \frac{1}{\frac{3}{2}}x^{3/2} + C = \frac{2}{3}x^{3/2} + C
 \]

- $k(x) = x^{-1/3}$
Examples

Find the indefinite integrals of the following functions.

- \(f(x) = x^6 \)
 \[
 \int x^6 \, dx = \frac{1}{7}x^7 + C
 \]

- \(g(x) = \frac{1}{x^2} \)
 \[
 \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{1}{-1}x^{-1} + C = -\frac{1}{x} + C
 \]

- \(h(x) = x^{1/2} \)
 \[
 \int x^{1/2} \, dx = \frac{1}{3/2}x^{3/2} + C = \frac{2}{3}x^{3/2} + C
 \]

- \(k(x) = x^{-1/3} \)
 \[
 \int x^{-1/3} \, dx = \frac{1}{2/3}x^{2/3} + C = \frac{3}{2}x^{2/3} + C
 \]
Common Indefinite Integrals

\[\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C \]
if \(n \neq -1 \)

\[\int \sin x \, dx = -\cos x + C \]

\[\int \cos x \, dx = \sin x + C \]

\[\int \sec^2 x \, dx = \tan x + C \]

\[\int \csc^2 x \, dx = -\cot x + C \]

\[\int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C \]

\[\int \frac{1}{\sqrt{1 - x^2}} \, dx = \sin^{-1} x + C \]

\[\int \frac{1}{|x| \sqrt{x^2 - 1}} \, dx = \sec^{-1} x + C \]

\[\int \sec x \tan x \, dx = \sec x + C \]

\[\int \csc x \cot x \, dx = -\csc x + C \]

\[\int e^x \, dx = e^x + C \]

\[\int e^{-x} \, dx = -e^{-x} + C \]
Theorem
Suppose that $f(x)$ and $g(x)$ have antiderivatives. Then, for any constants a and b,

$$
\int (af(x) + bg(x)) \, dx = a \int f(x) \, dx + b \int g(x) \, dx.
$$
Examples

Evaluate the following indefinite integrals.

\[\int (3 \cos x - \sin x) \, dx = 3 \sin x + \cos x + C \]

\[\int (4x - 2x^{-3}) \, dx = 2x^2 + x - 2 + C \]

\[\int \left(2 \sec x \tan x + \frac{1}{\sqrt{x}} \right) \, dx = 2 \sec x + 2 \sqrt{x} + C \]
Examples

Evaluate the following indefinite integrals.

1. \[
\int (3 \cos x - \sin x) \, dx = 3 \sin x + \cos x + C
\]
2. \[
\int (4x - 2x^{-3}) \, dx
\]
3. \[
\int \left(2 \sec x \tan x + \frac{1}{\sqrt{x}} \right) \, dx
\]
Examples

Evaluate the following indefinite integrals.

1. \[\int (3 \cos x - \sin x) \, dx = 3 \sin x + \cos x + C \]
2. \[\int (4x - 2x^{-3}) \, dx = 2x^2 + x^{-2} + C \]
3. \[\int \left(2 \sec x \tan x + \frac{1}{\sqrt{x}} \right) \, dx \]
Examples

Evaluate the following indefinite integrals.

1. \(\int (3 \cos x - \sin x) \, dx = 3 \sin x + \cos x + C \)
2. \(\int (4x - 2x^{-3}) \, dx = 2x^2 + x^{-2} + C \)
3. \(\int \left(2 \sec x \tan x + \frac{1}{\sqrt{x}} \right) \, dx = 2 \sec x + 2\sqrt{x} + C \)
Indefinite Integrals Involving the Natural Logarithm (1 of 2)

Theorem

If $x \neq 0$, \[\frac{d}{dx} \ln |x| = \frac{1}{x}. \]
Theorem
If \(x \neq 0 \), \(\frac{d}{dx} \ln |x| = \frac{1}{x} \).

Proof.

- Suppose \(x > 0 \), then
 \[
 \frac{d}{dx} \ln |x| = \frac{d}{dx} \ln x = \frac{1}{x}.
 \]
Theorem

If \(x \neq 0 \), \(\frac{d}{dx} \ln |x| = \frac{1}{x} \).

Proof.

\(\boxed{\text{Suppose } x > 0, \text{ then}} \)

\[
\frac{d}{dx} \ln |x| = \frac{d}{dx} \ln x = \frac{1}{x}.
\]

\(\boxed{\text{Suppose } x < 0, \text{ then}} \)

\[
\frac{d}{dx} \ln |x| = \frac{d}{dx} \ln(-x) = \frac{1}{-x}(-x)' = \frac{1}{x}.
\]
Examples

Find the derivatives of the following functions.

- $f(x) = \ln |\cos x|$

- $g(x) = \ln |f(x)|$ if $f(x) \neq 0$.
Examples

Find the derivatives of the following functions.

1. \(f(x) = \ln |\cos x| \)

 \[
 f'(x) = \frac{1}{\cos x} (\cos x)' = \frac{-\sin x}{\cos x} = -\tan x
 \]

2. \(g(x) = \ln |f(x)| \) if \(f(x) \neq 0 \).
Examples

Find the derivatives of the following functions.

- \(f(x) = \ln |\cos x| \)

\[
f'(x) = \frac{1}{\cos x} (\cos x)' = \frac{-\sin x}{\cos x} = -\tan x
\]

- \(g(x) = \ln |f(x)| \) if \(f(x) \neq 0 \).

\[
g'(x) = \frac{1}{f(x)} f'(x) = \frac{f'(x)}{f(x)}
\]
Corollary

If \(x \neq 0 \) then \(\int \frac{1}{x} \, dx = \ln |x| + C. \)
Corollary

If $x \neq 0$ then $\int \frac{1}{x} \, dx = \ln |x| + C.$

Corollary

If $f(x) \neq 0$ then $\int \frac{f'(x)}{f(x)} \, dx = \ln |f(x)| + C.$
Examples

Evaluate the following indefinite integrals.

1. \(\int \frac{\cos x}{\sin x} \, dx \)

2. \(\int \frac{2x}{x^2 - 1} \, dx \)

3. \(\int \frac{2x}{1 + x^2} \, dx \)
Examples

Evaluate the following indefinite integrals.

1. \(\int \frac{\cos x}{\sin x} \, dx \)
 \[\int \frac{\cos x}{\sin x} \, dx = \ln |\sin x| + C \]

2. \(\int \frac{2x}{x^2 - 1} \, dx \)

3. \(\int \frac{2x}{1 + x^2} \, dx \)
 \[\int \frac{2x}{1 + x^2} \, dx = \ln (1 + x^2) + C \]
Examples

Evaluate the following indefinite integrals.

\[\int \frac{\cos x}{\sin x} \, dx \]
\[\int \frac{\cos x}{\sin x} \, dx = \ln |\sin x| + C \]

\[\int \frac{2x}{x^2 - 1} \, dx \]
\[\int \frac{2x}{x^2 - 1} \, dx = \ln |x^2 - 1| + C \]

\[\int \frac{2x}{1 + x^2} \, dx \]
Examples

Evaluate the following indefinite integrals.

1. \[\int \frac{\cos x}{\sin x} \, dx = \ln |\sin x| + C \]

2. \[\int \frac{2x}{x^2 - 1} \, dx = \ln |x^2 - 1| + C \]

3. \[\int \frac{2x}{1 + x^2} \, dx = \ln |1 + x^2| + C = \ln(1 + x^2) + C \]
Homework

- Read Section 4.1
- Exercises: 1–47 odd