1. (4 points each) Find the exact values of the following limits if they exist. If a limit does not exist, please explain why.

(a) \(\lim_{x \to -3} \frac{x^2 - x - 12}{x + 3} \)

(b) \(\lim_{x \to 1^+} \frac{1 - 2x}{x^2 - 1} \)

(c) \(\lim_{x \to \infty} \frac{3x^2 - 5x + 4}{2 + 6x - 5x^2} \)
2. (4 points each) Find the following derivatives.

(a) \(\frac{d}{dx} (\sin e^x - 5x^2) \)

(b) \(\frac{d}{dx} \left(\ln x^2 - \frac{3}{x^4} + \tan^2 x \right) \)

(c) \(\frac{d}{dx} (e^x \cos^4 x) \)
3. (4 points) Use a linear approximation to estimate $\sqrt{25.1}$.

4. (6 points) The graph of the equation $xy = \sin y$ is a curve C passing through the point $P = (0, \pi)$. Find the equation of the line tangent to C at point P.
5. (4 points) Use the definition of the derivative as the limit of a difference quotient to find the derivative of \(f(x) = 3x^2 + 2x \). You may not use any shortcut differentiation rules in this problem.

6. (4 points each) Evaluate the following definite and indefinite integrals. You must give an exact answer, not a decimal approximation.

(a) \(\int \frac{x^2 + 1}{x} \, dx \)

(b) \(\int \frac{2x}{1 + x^2} \, dx \)
(c) \[\int_1^e \frac{\ln x}{4x} \, dx \]

(d) \[\int_0^{\sqrt{\pi}} x \left(1 + \sin x^2\right) \, dx \]

(e) \[\int_0^1 \frac{5e^x}{\sqrt{1 + e^x}} \, dx \]
7. (2 points) The graph of function $f(x)$ is shown below. Use the graph to find the value of

$$\int_{-1}^{3} f(x) \, dx.$$

8. (5 points) A rectangle in the xy-plane has its two lower corners on the x-axis and its two upper corners on the graph of $y = 16 - x^2$. For all such rectangles, what are the dimensions of the one with the largest area?
9. (6 points) As hot water fills a teapot, you note that the temperature (at time $t = 0$) is $y(0) = 210^\circ$F. Five minutes later (at time $t = 5$) the tea has cooled to $y(5) = 140^\circ$F. The room temperature is 70°F. According to Newton’s Law of Cooling, the instantaneous rate of cooling is directly proportional to the difference between the temperature of the tea $y(t)$ and the room temperature. Thus

$$\frac{dy}{dt} = k(y - 70), \quad \text{where } k \text{ is a constant.}$$

(a) Find the temperature function $y(t)$.

(b) What is the temperature of the tea after 10 minutes?

(c) At what time will the temperature of the tea be 87.5°F?
10. (1 point each) Evaluate the following expressions.

(a) \(\frac{d}{dx} \int_{1}^{x} \frac{1}{2 + \sin t} \, dt \)

(b) \(\int_{\pi}^{2\pi} \frac{d}{dx} \left(\frac{1}{2 + \sin x} \right) \, dx \)

(c) \(\frac{d}{dx} \int_{\pi}^{2\pi} \frac{1}{2 + \sin t} \, dt \)

(d) \(\frac{d}{dx} \int_{1}^{x^2} \frac{1}{2 + \sin t} \, dt \)
11. For the function \(f(x) = 4e^{-x^2/4} - 1 \), the first and second derivatives are
\[
f'(x) = -2xe^{-x^2/4} \quad \text{and} \quad f''(x) = (x^2 - 2)e^{-x^2/4}.
\]

(a) (1 point) Find the domain of \(f \).

(b) (1 point) Find the \(x \)-intercepts (if none, say so).

(c) (1 point) Find the \(y \)-intercept (if none, say so).

(d) (2 points) Find the intervals on which \(f \) is increasing and the intervals on which \(f \) is decreasing.

(e) (2 points) Find the \(x \)-coordinates of any local extrema.

(f) (2 points) Find the intervals on which \(f \) is concave up and the intervals on which \(f \) is concave down.
(g) (2 points) Find the x coordinate(s) of any inflection points (if none, say so).

(h) (2 points) Find any vertical or horizontal asymptotes (if none, say so).

(i) (2 points) Sketch the graph of f based on the information you found in parts (a)-(h).
12. (1 point each) Indicate whether each of the following statements is always True or sometimes False.

(a) The function \(f(x) = \cos x \), for \(-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}\), is one-to-one.

(b) \(\frac{d}{dx} 2^x = x2^{x-1} \)

(c) \(\ln \frac{1}{3} = -\int_1^3 \frac{1}{x} \, dx \)

(d) If \(f \) is continuous and \(1 \leq f(x) \leq 4 \) for all \(x \), then \(2 \leq \int_{-1}^{1} f(x) \, dx \leq 8 \).

(e) The function \(f(x) = \begin{cases} x & \text{if } x \leq 1 \\ cx^2 & \text{if } x > 1 \end{cases} \) is continuous at \(x = 1 \) if \(c = 1 \).

(f) There exists a function \(f \) such that \(f(x) > 0 \) for all \(x \) and \(\lim_{x \to 1} f(x) = 0 \).

(g) If \(f(1) = 1 \) and \(f(2) = 3 \), then there exists a value \(c \) between 1 and 2 such that \(f(c) = 2 \).

(h) \(\frac{d^2 y}{dx^2} = \left(\frac{dy}{dx} \right)^2 \)

(i) For every function \(f \) which is continuous on \([-1, 2]\), there exists a value \(c \) in \((-1, 2)\) for which \(3f(c) = f(2) - f(-1) \).

(j) \(\int_{-1}^{1} \frac{1}{x^4} \, dx = -\frac{2}{3} \)

Extra Credit (5 points — No partial credit) Find a continuous function \(f \) such that \(\int_0^x f(t) \, dt = 3f(x) - 2 \) for all \(x \).