Integral Test
MATH 211, *Calculus II*

J. Robert Buchanan

Department of Mathematics

Spring 2018
Remarks:

- Determining the convergence or divergence of a series from its sequence of partial sums is difficult for most series.
- We must develop some indirect techniques for determining if a series converges or diverges.
- Today we will work only with positive term series, i.e., series

\[\sum_{k=1}^{\infty} a_k \quad \text{where} \quad a_k \geq 0 \quad \text{for all} \; k. \]
Area Under the Curve

Consider \(\sum_{k=1}^{\infty} a_k \) for which there is a function \(f(x) \geq 0 \) for \(x \geq 1 \) and \(f(k) = a_k \) for \(k = 1, 2, \ldots \).

\[0 \leq \sum_{k=2}^{n} a_k = S_n - a_1 \leq \int_{1}^{n} f(x) \, dx \]
Boundedness

\[0 \leq S_n - a_1 \leq \int_1^n f(x) \, dx \]

\[a_1 \leq S_n \leq a_1 + \int_1^n f(x) \, dx \]

\[a_1 \leq S_n \leq a_1 + \int_1^n f(x) \, dx \leq a_1 + \int_1^\infty f(x) \, dx \]

\[a_1 \leq S_n \leq a_1 + \int_1^\infty f(x) \, dx \]

Remark: the sequence of partial sums is bounded if \(\int_1^\infty f(x) \, dx \) converges.
Boundedness

\[0 \leq S_n - a_1 \leq \int_{1}^{n} f(x) \, dx \]

\[a_1 \leq S_n \leq a_1 + \int_{1}^{n} f(x) \, dx \]

\[a_1 \leq S_n \leq a_1 + \int_{1}^{\infty} f(x) \, dx \leq a_1 + \int_{1}^{\infty} f(x) \, dx \]

Remark: the sequence of partial sums is bounded if \(\int_{1}^{\infty} f(x) \, dx \) converges.
Monotonicity

\[S_n \leq S_{n+1} \quad \text{for all } n = 1, 2, \ldots \quad \text{Why?} \]
Monotonicity

\[S_n \leq S_{n+1} \text{ for all } n = 1, 2, \ldots \]

Why?

\[\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{n+1} a_k \]
Monotonicity

\[S_n \leq S_{n+1} \quad \text{for all } n = 1, 2, \ldots \quad \text{Why?} \]

\[\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{n+1} a_k \]

\[\sum_{k=1}^{n} a_k \leq a_{n+1} + \sum_{k=1}^{n} a_k \]

Conclusion: if \(\int_{1}^{\infty} f(x) \, dx \) converges, the \(\{S_n\}_{n=1}^{\infty} \) is increasing and bounded and thus must converge. Hence \(\sum_{k=1}^{\infty} a_k \) converges.
Monotonicity

\[S_n \leq S_{n+1} \quad \text{for all } n = 1, 2, \ldots \quad \text{Why?} \]

\[\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{n+1} a_k \]

\[\sum_{k=1}^{n} a_k \leq a_{n+1} + \sum_{k=1}^{n} a_k \]

\[0 \leq a_{n+1} \]
Monotonicity

\[S_n \leq S_{n+1} \text{ for all } n = 1, 2, \ldots \] Why?

\[
\sum_{k=1}^{n} a_k \leq \sum_{k=1}^{n+1} a_k \\
\sum_{k=1}^{n} a_k \leq a_{n+1} + \sum_{k=1}^{n} a_k \\
0 \leq a_{n+1}
\]

Conclusion: if \[\int_{1}^{\infty} f(x) \, dx \] converges the \(\{S_n\}_{n=1}^{\infty} \) is increasing and bounded and thus must converge. Hence \(\sum_{k=1}^{\infty} a_k \) converges.
Area Under the Curve

Consider this scenario:

\[0 \leq \int_{1}^{n} f(x) \, dx \leq \sum_{k=1}^{n-1} a_k = S_{n-1} \]
Divergence

\[\int_1^n f(x) \, dx \leq S_{n-1} \]

\[\lim_{n \to \infty} \int_1^n f(x) \, dx \leq \lim_{n \to \infty} S_{n-1} \]

\[\int_1^\infty f(x) \, dx \leq \lim_{n \to \infty} S_{n-1} \]

Remark: if \(\int_1^\infty f(x) \, dx \) diverges, then the sequence of partial sums diverges as well.
Divergence

\[\int_{1}^{n} f(x) \, dx \leq S_{n-1} \]

\[\lim_{n \to \infty} \int_{1}^{n} f(x) \, dx \leq \lim_{n \to \infty} S_{n-1} \]

\[\int_{1}^{\infty} f(x) \, dx \leq \lim_{n \to \infty} S_{n-1} \]

Remark: if \(\int_{1}^{\infty} f(x) \, dx \) diverges, then the sequence of partial sums diverges as well.
Theorem (Integral Test)

If $f(k) = a_k$ for all $k = 1, 2, \ldots$, f is continuous and decreasing, and $f(x) \geq 0$ for $x \geq 1$, then the improper integral $\int_1^\infty f(x) \, dx$ and the infinite series $\sum_{k=1}^{\infty} a_k$ either both converge or both diverge.

Remark: when the integral and the series both converge they do not necessarily converge to the same value.
Integral Test

Theorem (Integral Test)

If \(f(k) = a_k \) for all \(k = 1, 2, \ldots \), \(f \) is continuous and decreasing, and \(f(x) \geq 0 \) for \(x \geq 1 \), then the improper integral \(\int_1^\infty f(x) \, dx \) and the infinite series \(\sum_{k=1}^\infty a_k \) either both converge or both diverge.

Remark: when the integral and the series both converge they do not necessarily converge to the same value.
Examples

Determine, using the Integral Test, whether the following infinite series converge or diverge.

1. \(\sum_{k=1}^{\infty} \frac{1}{k} \)

2. \(\sum_{k=1}^{\infty} \frac{1}{k^2} \)
Let $f(x) = 1/x$, then $f(k) = 1/k = a_k$ for all $k \in \mathbb{N}$.

\[
\int_1^\infty \frac{1}{x} \, dx = \lim_{R \to \infty} \int_1^R \frac{1}{x} \, dx
\]
\[
= \lim_{R \to \infty} [\ln x]_1^R
\]
\[
= \lim_{R \to \infty} (\ln R - \ln 1) = \infty \quad \text{(diverges)}
\]

Hence the Integral Test shows that the Harmonic Series diverges.
Let \(f(x) = 1/x^2 \), then \(f(k) = 1/k^2 = a_k \) for all \(k \in \mathbb{N} \).

\[
\int_1^\infty \frac{1}{x^2} \, dx = \lim_{R \to \infty} \int_1^R \frac{1}{x^2} \, dx
\]

\[
= \lim_{R \to \infty} \left[\frac{-1}{x} \right]_1^R
\]

\[
= \lim_{R \to \infty} \left(\frac{-1}{R} + 1 \right) = 1 \text{ (converges)}
\]

Thus by the Integral Test, \(\sum_{k=1}^{\infty} \frac{1}{k^2} \) converges.
p-Series

Definition

An infinite series of the form $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is called a p-series.
Definition

An infinite series of the form $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is called a p-series.

Theorem

The p-series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ converges if $p > 1$ and diverges if $p \leq 1$.
Suppose \(p = 1 \).

\[
\int_1^\infty \frac{1}{x^p} \, dx = \lim_{R \to \infty} \int_1^R \frac{1}{x} \, dx
\]

\[
= \lim_{R \to \infty} \left[\ln x \right]_{x=1}^{x=R}
\]

\[
= \lim_{R \to \infty} \ln R = \infty
\]

In this case the improper integral diverges and by the Integral Test, the series \(\sum_{k=1}^{\infty} \frac{1}{k} \) diverges.
Suppose \(p \neq 1 \).

\[
\int_1^\infty \frac{1}{x^p} \, dx = \lim_{R \to \infty} \int_1^R x^{-p} \, dx
\]

\[
= \lim_{R \to \infty} \left[\frac{1}{1 - p} x^{1-p} \right]_1^R
\]

\[
= \lim_{R \to \infty} \left(\frac{1}{1 - p} \frac{1}{R^{p-1}} - \frac{1}{1 - p} \right)
\]

\[
= \begin{cases}
\infty & \text{if } p < 1, \\
1/(p - 1) & \text{if } p > 1.
\end{cases}
\]

By the Integral Test, the series \(\sum_{k=1}^\infty \frac{1}{k^p} \) converges if \(p > 1 \).
Examples

Which of the following series converge and which diverge?

1. \(\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \)
 converges

2. \(\sum_{k=1}^{\infty} \frac{1}{k^{1/4}} \)
 diverges

3. \(\sum_{k=1}^{\infty} \frac{1}{k^{1.001}} \)
 converges

4. \(\sum_{k=1}^{\infty} \frac{1}{k^{-5/4}} \)
 diverges
Examples

Which of the following series converge and which diverge?

1. \[\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \] diverges, \(\frac{3}{2} > 1 \)

2. \[\sum_{k=1}^{\infty} \frac{1}{k^{1/4}} \] diverges

3. \[\sum_{k=1}^{\infty} \frac{1}{k^{1.001}} \] converges

4. \[\sum_{k=1}^{\infty} \frac{1}{k^{-5/4}} \] diverges
Which of the following series converge and which diverge?

1. \(\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \)
 \(\frac{3}{2} > 1 \) converges

2. \(\sum_{k=1}^{\infty} \frac{1}{k^{1/4}} \)
 \(\frac{1}{4} \leq 1 \) diverges

3. \(\sum_{k=1}^{\infty} \frac{1}{k^{1.001}} \)

4. \(\sum_{k=1}^{\infty} \frac{1}{k^{-5/4}} \)
Examples

Which of the following series converge and which diverge?

1. \[\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \quad \frac{3}{2} > 1 \text{ converges} \]

2. \[\sum_{k=1}^{\infty} \frac{1}{k^{1/4}} \quad \frac{1}{4} \leq 1 \text{ diverges} \]

3. \[\sum_{k=1}^{\infty} \frac{1}{k^{1.001}} \quad 1.001 > 1 \text{ converges} \]

4. \[\sum_{k=1}^{\infty} \frac{1}{k^{-5/4}} \]
Which of the following series converge and which diverge?

1. \[\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \quad \frac{3}{2} > 1 \text{ converges} \]

2. \[\sum_{k=1}^{\infty} \frac{1}{k^{1/4}} \quad \frac{1}{4} \leq 1 \text{ diverges} \]

3. \[\sum_{k=1}^{\infty} \frac{1}{k^{1.001}} \quad 1.001 > 1 \text{ converges} \]

4. \[\sum_{k=1}^{\infty} \frac{1}{k^{-5/4}} \quad -\frac{5}{4} \leq 1 \text{ diverges} \]
Earlier we said that in general $\sum_{k=1}^{\infty} a_k \neq \int_1^{\infty} f(x) \, dx$, but an improper integral can be used to help \textit{estimate} the sum of the series.
Series Remainder

Earlier we said that in general \(\sum_{k=1}^{\infty} a_k \neq \int_{1}^{\infty} f(x) \, dx \), but an improper integral can be used to help \textbf{estimate} the sum of the series.

Let \(S = \sum_{k=1}^{\infty} a_k \) and define the \textbf{remainder} \(R_n \) as

\[
R_n = S - S_n = \sum_{k=1}^{\infty} a_k - \sum_{k=1}^{n} a_k = \sum_{k=n+1}^{\infty} a_k
\]
\[
\sum_{k=n+1}^{\infty} a_k \leq \int_{n}^{\infty} f(x) \, dx
\]
Theorem

Suppose that \(f(k) = a_k \) for all \(k = 1, 2, \ldots \), where \(f \) is continuous and decreasing and \(f(x) \geq 0 \) for all \(x \geq 1 \). Further suppose that \(\int_{1}^{\infty} f(x) \, dx \) converges. The remainder \(R_n \) satisfies the inequality

\[
0 \leq R_n = \sum_{k=n+1}^{\infty} a_k \leq \int_{n}^{\infty} f(x) \, dx.
\]
Example

Estimate the error in using S_{100} to approximate

$$\sum_{k=1}^{\infty} \frac{4}{1 + k^2}.$$
Example

Estimate the error in using S_{100} to approximate

$$\sum_{k=1}^{\infty} \frac{4}{1 + k^2}.$$

$S - S_{100} \leq \int_{100}^{\infty} \frac{4}{1 + x^2} \, dx = \lim_{R \to \infty} \int_{100}^{R} \frac{4}{1 + x^2} \, dx$

$$= \lim_{R \to \infty} \left[4 \tan^{-1} x \right]_{x=100}^{x=R} = 4 \lim_{R \to \infty} (\tan^{-1} R - \tan^{-1} 100)$$

$$\approx 0.04$$

Note: $S_{100} = \sum_{k=1}^{100} \frac{4}{1 + k^2} \approx 4.2669$
Determine if the following infinite series converge or diverge.

\[
\sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{1}{x^{4/3}} \, dx
\]

\[
\sum_{k=1}^{\infty} \int_{k}^{k+1} x^{1/3} \, dx
\]
\[
\sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{1}{x^{4/3}} \, dx
\]

\[
\sum_{k=1}^{\infty} \int_{k}^{k+1} \frac{1}{x^{4/3}} \, dx = \sum_{k=1}^{\infty} \int_{k}^{k+1} x^{-4/3} \, dx
\]

\[
= \sum_{k=1}^{\infty} \left[-3x^{-1/3} \right]_{x=k}^{x=k+1}
\]

\[
= 3 \sum_{k=1}^{\infty} \left(\frac{1}{k^{1/3}} - \frac{1}{(k+1)^{1/3}} \right) \quad \text{(telescoping sum)}
\]

\[
= 3
\]
\[\sum_{k=1}^{\infty} \int_{k}^{k+1} x^{1/3} \, dx \]

\[\sum_{k=1}^{\infty} \int_{k}^{k+1} x^{1/3} \, dx = \sum_{k=1}^{\infty} \left[\frac{3}{4} x^{4/3} \right]_{x=k}^{x=k+1} \]

\[= \frac{3}{4} \sum_{k=1}^{\infty} \left((k + 1)^{4/3} - k^{4/3} \right) \]

While this sum telescopes, the \(N \)th partial sum is

\[S_N = \frac{3}{4} \sum_{k=1}^{N} \left((k + 1)^{4/3} - k^{4/3} \right) = \frac{3}{4} \left((N + 1)^{4/3} - 1 \right) \]

which diverges as \(N \to \infty \).
Homework

- Read Section 11.3
- Exercises: WebAssign/D2L