1. Do not solve the integral expression. Simplify your result.

\[\int \frac{x^2}{\sqrt{4-x^2}} \, dx \]

2. Find the area of the region bounded between the curves \(y = x^2 \) and \(y = 4 - x^2 \).

\[A = \int_{-2}^{2} (4 - x^2) - x^2 \, dx \]

\[A = \int_{-2}^{2} 4 - 2x^2 \, dx \]

\[= \left[\frac{8}{3} x^3 - \frac{4}{3} x^3 \right]_{-2}^{2} \]

\[= \frac{32}{3} \cdot 2 \cdot \frac{1}{3} \]

\[= \frac{32}{3} \cdot \frac{2}{3} \]

\[= \frac{64}{9} \]
6. A pool is being made in a rectangular yard. The
swimmer wants it to be 6 ft. below the water so it has the shape:
Find the horsepower on the dam.

\[F = 62 \times 10^{-3} \left[\frac{1}{2} \left(a^2 + b^2 \right) \right] \]
\[= 62 \left(a^2 + b^2 \right) \]
\[= \left(a^2 \times b^2 \right) \left(\frac{1}{2} - \frac{1}{2} \right) \]
\[= 72 \text{ ft.}

4. The pump is a water wheel with a radius of 6 ft. The
power of the wheel is to be used to raise the water. Find the
work done in lifting the water.

\[W = 62 \times 10^{-3} \left((2 + 2) \times (2 + 2) \right) \]
\[= 1.55 \times 10^{3} \times 1.14 \]
\[= 1.80 \times 10^{3} \text{ ft.-ft.} \]
4. (a) Find the area of the region bounded by the graphs of $y = \sqrt{x}$, $y = 2$, and $x = 0$.

\[A = \int_{0}^{2} (2 - \sqrt{x}) \, dx \]

(b) Find the volume of the solid obtained by rotating the region bounded by the graphs of $y = \sqrt{x}$, $y = 2$, and $x = 0$ about the x-axis.

\[V = \pi \int_{0}^{2} (2^2 - \sqrt{x}^2) \, dx \]

(c) Find the volume of the solid obtained by rotating the region bounded by the graphs of $y = \sqrt{x}$, $y = 2$, and $x = 0$ about the y-axis.

\[V = \pi \int_{0}^{2} \left(\frac{2^2}{x} \right) \, dx \]