\[
\begin{align*}
\text{(a)} & \quad x^2 + y^2 = r^2 \\
\text{(b)} & \quad x^2 + y^2 = r^2 \\
\text{(c)} & \quad x^2 + y^2 = r^2 \\
\text{(d)} & \quad x^2 + y^2 = r^2 \\
\end{align*}
\]
\[\begin{align*}
\text{(1)} & \quad \phi_1 \cdot \phi_1 + (x, y) \\
& \quad \phi_2 \cdot \phi_2 + (y, z) \\
& \quad \phi_3 \cdot \phi_3 + (z, x) \\
& \quad \phi_4 \cdot \phi_4 + (x, y) \\
& \quad \phi_5 \cdot \phi_5 + (y, z) \\
& \quad \phi_6 \cdot \phi_6 + (z, x) \\
& \quad \phi_7 \cdot \phi_7 + (x, y) \\
& \quad \phi_8 \cdot \phi_8 + (y, z) \\
& \quad \phi_9 \cdot \phi_9 + (z, x) \\
& \quad \phi_{10} \cdot \phi_{10} + (x, y) \\
& \quad \phi_{11} \cdot \phi_{11} + (y, z) \\
& \quad \phi_{12} \cdot \phi_{12} + (z, x) \\
& \quad \phi_{13} \cdot \phi_{13} + (x, y) \\
& \quad \phi_{14} \cdot \phi_{14} + (y, z) \\
& \quad \phi_{15} \cdot \phi_{15} + (z, x) \\
& \quad \phi_{16} \cdot \phi_{16} + (x, y) \\
& \quad \phi_{17} \cdot \phi_{17} + (y, z) \\
& \quad \phi_{18} \cdot \phi_{18} + (z, x)
\end{align*} \]
\[y''(y' + 1)(y'' + 1) = 0 \]

\[\frac{d^2 y}{dx^2} = 0 \]

\[y(0) = 0 \]

\[y'(0) = 1 \]
21. (\(A, \phi, B \)) are related to \(\pi \) and \(\phi \).

The choice here is relevant for understanding the relationship between \(A, \phi, B \) and \(\pi, \phi \). The boundary value at \((\phi, B)^\prime\) and \((\phi, A)\) on the boundary at \((\phi, B)\) and \((\phi, A)\) is \((\phi, B)^\prime\) and \((\phi, A)\) respectively.

\[\pi, \phi \] is the min.

22. (\(A, \phi, B \)) are related to \(\pi \) and \(\phi \).

The system kind is relevant for understanding the relationship between \(A, \phi, B \) and \(\pi, \phi \). The boundary value at \((\phi, B)^\prime\) and \((\phi, A)\) on the boundary at \((\phi, B)\) and \((\phi, A)\) is \((\phi, B)^\prime\) and \((\phi, A)\) respectively.

\[\pi, \phi \] is the min.

[Notes: The text appears to be discussing mathematical or scientific concepts related to boundary values and system identification. The notation suggests a context involving functions or variables related to \(A, \phi, B, \pi \).]