1. Consider the vector
\[a = 4\mathbf{i} - 5\mathbf{j} + 6\mathbf{k}. \]

(a) Find the vector that has the same direction as \(a \) and twice the magnitude of \(a \).

(b) Find the vector that has the opposite direction of \(a \) and one-third the magnitude of \(a \).

(c) Find the vector that has the same direction as \(a \) and magnitude 3.

2. Calculate the following quantities if
\[a = (1, 1, -2) \quad \text{and} \quad b = (3, -2, 1). \]

(a) \(2a + 3b \)

(b) \(\|b\| \)
3. If \(\mathbf{u} \) and \(\mathbf{v} \) are the vectors shown in the figure, find \(\mathbf{u} \cdot \mathbf{v} \),

\[
|\mathbf{V}| = 3 \\
\pi/4 \\
|\mathbf{U}| = 2
\]

4. Consider the vectors in the \(xy \)-plane shown below. Express the following vector sums as a scalar multiple of just one of the six vectors.

(a) \(\mathbf{a} + \mathbf{b} \)
5. Show that \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal, where
\[
\mathbf{a} = 3\mathbf{i} - 2\mathbf{j} + \mathbf{k} \quad \text{and} \quad \mathbf{b} = 4\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}
\]

6. Find the values of \(x \) such that the vectors \(\langle 3, 2, x \rangle \) and \(\langle 2x, 4, x \rangle \) are orthogonal.

7. Find the angle between the diagonal of a cube and one of its edges.