The Calculus of Vector-Valued Functions
MATH 311, *Calculus III*

J. Robert Buchanan

Department of Mathematics

Fall 2015
Limits of Vector-Valued Functions

Definition
For a vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \), the limit of \(\mathbf{r}(t) \) as \(t \) approaches \(a \) is

\[
\lim_{t \to a} \mathbf{r}(t) = \lim_{t \to a} \langle f(t), g(t), h(t) \rangle = \langle \lim_{t \to a} f(t), \lim_{t \to a} g(t), \lim_{t \to a} h(t) \rangle
\]

provided all of the indicated limits exist. If any of the limits on the right-hand side do not exist, then \(\lim_{t \to a} \mathbf{r}(t) \) does not exist.
Example (1 of 2)

Evaluate the following limit, if it exists.

\[
\lim_{t \to 0} \langle 1 + t^3, te^{-t}, \frac{\sin t}{t} \rangle
\]
Example (1 of 2)

Evaluate the following limit, if it exists.

\[
\lim_{t \to 0} \langle 1 + t^3, te^{-t}, \frac{\sin t}{t} \rangle
\]

\[
= \langle \lim_{t \to 0} 1 + t^3, \lim_{t \to 0} te^{-t}, \lim_{t \to 0} \frac{\sin t}{t} \rangle
\]

\[
= \langle 1, 0, 1 \rangle
\]
Example (2 of 2)

Evaluate the following limit, if it exists.

$$\lim_{t \to 1} \langle \sqrt{t - 1}, t^2 + 1, \frac{t + 1}{t - 1} \rangle$$

Does not exist since $$\lim_{t \to 1} \sqrt{t - 1}$$ does not exist, and $$\lim_{t \to 1} \frac{t + 1}{t - 1}$$ does not exist.
Example (2 of 2)

Evaluate the following limit, if it exists.

\[
\lim_{t \to 1} \langle \sqrt{t - 1}, t^2 + 1, \frac{t + 1}{t - 1} \rangle
\]

\[
\lim_{t \to 1} \langle \sqrt{t - 1}, t^2 + 1, \frac{t + 1}{t - 1} \rangle
= \left\langle \lim_{t \to 1} \sqrt{t - 1}, \lim_{t \to 1} (t^2 + 1), \lim_{t \to 1} \frac{t + 1}{t - 1} \right\rangle
\]

Does not exist since \(\lim_{t \to 1} \sqrt{t - 1}\) does not exist, and \(\lim_{t \to 1} \frac{t + 1}{t - 1}\) does not exist.
Example (2 of 2)

Evaluate the following limit, if it exists.

\[
\lim_{t \to 1} \langle \sqrt{t - 1}, t^2 + 1, \frac{t + 1}{t - 1} \rangle
\]

\[
\lim_{t \to 1} \langle \sqrt{t - 1}, t^2 + 1, \frac{t + 1}{t - 1} \rangle = \left\langle \lim_{t \to 1} \sqrt{t - 1}, \lim_{t \to 1} (t^2 + 1), \lim_{t \to 1} \frac{t + 1}{t - 1} \right\rangle
\]

Does not exist since

\[
\lim_{t \to 1} \sqrt{t - 1} \quad \text{does not exist, and}
\]

\[
\lim_{t \to 1} \frac{t + 1}{t - 1} \quad \text{does not exist.}
\]
Continuity (1 of 2)

Definition

The vector-valued function \(r(t) = \langle f(t), g(t), h(t) \rangle \) is **continuous** at \(t = a \) whenever

\[
\lim_{t \to a} r(t) = r(a).
\]
Continuity (1 of 2)

Definition
The vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) is \textbf{continuous} at \(t = a \) whenever

\[\lim_{{t \to a}} \mathbf{r}(t) = \mathbf{r}(a). \]

The limit must exist at \(t = a \) and equal the value of the function at \(t = a \).
Continuity (2 of 2)

Theorem
A vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ is continuous at $t = a$ if and only if all of f, g, and h are continuous at $t = a$.
Theorem

A vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) is continuous at \(t = a \) if and only if all of \(f, g, \) and \(h \) are continuous at \(t = a \).

Example

1. Determine the values of \(t \) for which \(\mathbf{r}(t) = \langle t + 1, t - 1, \ln(4 - t^2) \rangle \) is continuous.
Theorem
A vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \) is continuous at \(t = a \) if and only if all of \(f \), \(g \), and \(h \) are continuous at \(t = a \).

Example

1. Determine the values of \(t \) for which \(\mathbf{r}(t) = \langle t + 1, t - 1, \ln(4 - t^2) \rangle \) is continuous.

2. Determine the values of \(t \) for which \(\mathbf{r}(t) = \langle \tan t, \cot t, e^{-t} \rangle \) is continuous.
Recall: for a real-valued function $f(t)$, the derivative of f is defined as

$$
\lim_{h \to 0} \frac{f(t + h) - f(t)}{h}
$$

provided the limit exists.

For the sake of convenience later we will write this in the alternative form in which we replace h with Δt.

$$
f'(t) = \lim_{\Delta t \to 0} \frac{f(t + \Delta t) - f(t)}{\Delta t}
$$
Derivatives of Vector-Valued Functions

Definition
The **derivative** \(r'(t) \) of the vector-valued function \(r(t) \) is

\[
r'(t) = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - r(t)}{\Delta t}
\]

provided the limit exists. When the limit exists for \(t = c \) we say that \(r \) is **differentiable** at \(t = c \).
Derivatives of Vector-Valued Functions

Definition
The **derivative** \(r'(t) \) of the vector-valued function \(r(t) \) is

\[
r'(t) = \lim_{\Delta t \to 0} \frac{r(t + \Delta t) - r(t)}{\Delta t}
\]

provided the limit exists. When the limit exists for \(t = c \) we say that \(r \) is **differentiable** at \(t = c \).

Theorem
Let \(r(t) = \langle f(t), g(t), h(t) \rangle \) and suppose that the components \(f, g, \) and \(h \) are all differentiable for some value of \(t \). Then \(r \) is also differentiable at that value of \(t \) and

\[
r'(t) = \langle f'(t), g'(t), h'(t) \rangle.
\]
Examples

Find the derivatives of the following vector-valued functions provided they are differentiable.

1. \(\mathbf{r}(t) = \langle \sqrt{t}, 2 - t^3, \cos 2t \rangle \)

2. \(\mathbf{r}(t) = \langle \frac{t - 3}{t + 1}, te^{2t}, t^3 \tan t \rangle \)
Examples

Find the derivatives of the following vector-valued functions provided they are differentiable.

1. \(\mathbf{r}(t) = \langle \sqrt{t}, 2 - t^3, \cos 2t \rangle \)

 \[\mathbf{r}'(t) = \langle \frac{1}{2\sqrt{t}}, -3t^2, -2\sin 2t \rangle \]

2. \(\mathbf{r}(t) = \langle \frac{t - 3}{t + 1}, te^{2t}, t^3 \tan t \rangle \)
Examples

Find the derivatives of the following vector-valued functions provided they are differentiable.

1. \(\mathbf{r}(t) = \langle \sqrt{t}, 2 - t^3, \cos 2t \rangle \)
 \[\mathbf{r}'(t) = \langle \frac{1}{2\sqrt{t}}, -3t^2, -2 \sin 2t \rangle \]

2. \(\mathbf{r}(t) = \langle \frac{t - 3}{t + 1}, te^{2t}, t^3 \tan t \rangle \)
 \[\mathbf{r}'(t) = \langle \frac{4}{(t + 1)^2}, (1 + 2t)e^{2t}, 3t^2 \tan t + t^3 \sec^2 t \rangle \]
Properties of the Derivative

Theorem

Suppose that \(r(t) \) and \(s(t) \) are differentiable vector-valued functions, \(f(t) \) is a differentiable scalar function, and \(c \) is a scalar constant. Then:

1. \(\frac{d}{dt}[r(t) + s(t)] = r'(t) + s'(t) \)
2. \(\frac{d}{dt}[cr(t)] = cr'(t) \)
3. \(\frac{d}{dt}[f(t)r(t)] = f'(t)r(t) + f(t)r'(t) \)
4. \(\frac{d}{dt}[r(t) \cdot s(t)] = r'(t) \cdot s(t) + r(t) \cdot s'(t) \)
5. \(\frac{d}{dt}[r(t) \times s(t)] = r'(t) \times s(t) + r(t) \times s'(t) \)
Smooth Curves

If a curve is traced out by the vector-valued function $\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle$ for t in the interval $[a, b]$ then the curve is \textbf{smooth} if \mathbf{r}' is continuous on $[a, b]$ and $\mathbf{r}'(t) \neq \mathbf{0}$ except possibly at the endpoints.
Example (1 of 2)

Determine where the curve traced out by \(\mathbf{r}(t) = \langle t^4, t^3, t^2 \rangle \) is smooth.
Determine where the curve traced out by \(r(t) = \langle t^4, t^3, t^2 \rangle \) is smooth.

\[
r'(t) = \langle 4t^3, 3t^2, 2t \rangle
\]
Example (1 of 2)

Determine where the curve traced out by \(\mathbf{r}(t) = \langle t^4, t^3, t^2 \rangle \) is smooth.

\[
\mathbf{r}'(t) = \langle 4t^3, 3t^2, 2t \rangle
\]

Note: \(\mathbf{r}'(t) = 0 \) when \(t = 0 \).
Example (2 of 2)
Geometric Interpretation of $\mathbf{r}'(t)$

The derivative can be thought of as the tangent vector to the path.
Example

Suppose \(\mathbf{r}(t) = \langle 2 \cos t, \sin t, t \rangle \) and \(a = \pi/2 \).

1. Find the direction of the tangent vector for \(\mathbf{r}(t) \) at \(t = a \).
Example

Suppose \(\mathbf{r}(t) = \langle 2 \cos t, \sin t, t \rangle \) and \(a = \pi/2 \).

1. Find the direction of the tangent vector for \(\mathbf{r}(t) \) at \(t = a \).

\[
\mathbf{r}' \left(\frac{\pi}{2} \right) = \langle -2 \sin \frac{\pi}{2}, \cos \frac{\pi}{2}, 1 \rangle = \langle -2, 0, 1 \rangle
\]
Example

Suppose \(\mathbf{r}(t) = \langle 2 \cos t, \sin t, t \rangle \) and \(a = \pi/2 \).

1. Find the direction of the tangent vector for \(\mathbf{r}(t) \) at \(t = a \).

\[
\mathbf{r}' \left(\frac{\pi}{2} \right) = \langle -2 \sin \frac{\pi}{2}, \cos \frac{\pi}{2}, 1 \rangle = \langle -2, 0, 1 \rangle
\]

2. Find the parametric form of the tangent line to the curve generated by \(\mathbf{r}(t) \) at \(t = a \).
Example

Suppose \(\mathbf{r}(t) = \langle 2 \cos t, \sin t, t \rangle \) and \(a = \pi/2 \).

1. Find the direction of the tangent vector for \(\mathbf{r}(t) \) at \(t = a \).

\[
\mathbf{r}' \left(\frac{\pi}{2} \right) = \langle -2 \sin \frac{\pi}{2}, \cos \frac{\pi}{2}, 1 \rangle = \langle -2, 0, 1 \rangle
\]

2. Find the parametric form of the tangent line to the curve generated by \(\mathbf{r}(t) \) at \(t = a \).
Since \(\mathbf{r}(\pi/2) = \langle 0, 1, \pi/2 \rangle \) then

\[
\begin{align*}
x &= 0 + (-2)t = -2t \\
y &= 1 + (0)t = 1 \\
z &= \frac{\pi}{2} + t
\end{align*}
\]
Geometric Interpretation of $\mathbf{r}'(t)$
Orthogonality

Theorem
\[\|r(t)\| \text{ is constant if and only if } r(t) \text{ and } r'(t) \text{ are orthogonal for all } t. \]
Orthogonality

Theorem
\[\|r(t)\| \text{ is constant if and only if } r(t) \text{ and } r'(t) \text{ are orthogonal for all } t. \]

Proof.

- Suppose \(\|r(t)\| = C, \) a constant.
Orthogonality

Theorem
\[\|r(t)\| \text{ is constant if and only if } r(t) \text{ and } r'(t) \text{ are orthogonal for all } t. \]

Proof.

▶ Suppose \(\|r(t)\| = C \), a constant.
▶ Suppose \(r(t) \cdot r'(t) = 0 \) for all \(t \).
Definition
The vector-valued function $\mathbf{R}(t)$ is an antiderivative of the vector-valued function $\mathbf{r}(t)$ whenever $\mathbf{R}'(t) = \mathbf{r}(t)$. If $\mathbf{R}(t)$ is any antiderivative of $\mathbf{r}(t)$, the indefinite integral of $\mathbf{r}(t)$ is defined to be $\int \mathbf{r}(t) \, dt = \mathbf{R}(t) + \mathbf{c}$ where \mathbf{c} is an arbitrary constant vector.
Antiderivatives and Indefinite Integrals

Definition
The vector-valued function $R(t)$ is an antiderivative of the vector-valued function $r(t)$ whenever $R'(t) = r(t)$.

If $R(t)$ is any antiderivative of $r(t)$, the indefinite integral of $r(t)$ is defined to be

$$\int r(t) \, dt = R(t) + c$$

where c is an arbitrary constant vector.
Example

Evaluate the following indefinite integrals.

1. \(\int \langle 2 \cos t, \sin t, 2t \rangle \ dt \)

2. \(\int \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \ dt \)
Example

Evaluate the following indefinite integrals.

1. \[
\int \langle 2 \cos t, \sin t, 2t \rangle \, dt \\
= \langle 2 \sin t, -\cos t, t^2 \rangle + c
\]

2. \[
\int \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt
\]
Example

Evaluate the following indefinite integrals.

1. \[\int \langle 2 \cos t, \sin t, 2t \rangle \, dt \]
 \[\int \langle 2 \cos t, \sin t, 2t \rangle \, dt = \langle 2 \sin t, -\cos t, t^2 \rangle + c \]

2. \[\int \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt \]
 \[\int \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt = \left\langle -\frac{1}{3} e^{-3t}, -\frac{1}{5} \cos 5t, \frac{2}{5} t^{5/2} \right\rangle + c \]
Definite Integrals

Definition
For the vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \), we define the definite integral of \(\mathbf{r}(t) \) on the interval \([a, b]\) by

\[
\int_a^b \mathbf{r}(t) \, dt = \int_a^b \langle f(t), g(t), h(t) \rangle \, dt
\]

\[
= \left\langle \int_a^b f(t) \, dt, \int_a^b g(t) \, dt, \int_a^b h(t) \, dt \right\rangle
\]

Theorem
Suppose that \(R(t) \) is an antiderivative of \(\mathbf{r}(t) \) on the interval \([a, b]\), then

\[
\int_a^b \mathbf{r}(t) \, dt = R(b) - R(a).
\]
Definite Integrals

Definition
For the vector-valued function \(\mathbf{r}(t) = \langle f(t), g(t), h(t) \rangle \), we define the **definite integral** of \(\mathbf{r}(t) \) on the interval \([a, b]\) by

\[
\int_a^b \mathbf{r}(t) \, dt = \int_a^b \langle f(t), g(t), h(t) \rangle \, dt
\]

\[
= \left\langle \int_a^b f(t) \, dt, \int_a^b g(t) \, dt, \int_a^b h(t) \, dt \right\rangle
\]

Theorem
Suppose that \(\mathbf{R}(t) \) is an antiderivative of \(\mathbf{r}(t) \) on the interval \([a, b]\), then

\[
\int_a^b \mathbf{r}(t) \, dt = \mathbf{R}(b) - \mathbf{R}(a).
\]
Evaluate the following definite integral.

$$\int_0^{\pi/2} \langle 2 \cos t, \sin t, 2t \rangle \, dt$$
Evaluate the following definite integral.

\[
\int_0^{\pi/2} \langle 2 \cos t, \sin t, 2t \rangle \, dt
\]

\[
\int_0^{\pi/2} \langle 2 \cos t, \sin t, 2t \rangle \, dt = \langle 2 \sin t, -\cos t, t^2 \rangle \bigg|_0^{\pi/2}
\]

\[
= \langle 2, 1, \frac{\pi^2}{4} \rangle
\]
Evaluate the following definite integral.

\[
\int_0^1 \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt
\]
Evaluate the following definite integral.

\[\int_0^1 \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt \]

\[\int_0^1 \langle e^{-3t}, \sin 5t, t^{3/2} \rangle \, dt = \left. \left\langle -\frac{1}{3}e^{-3t}, -\frac{1}{5}\cos 5t, \frac{2}{5}t^{5/2} \right\rangle \right|_0^1 \]

\[= \left\langle \frac{1}{3}(1 - e^{-3}), \frac{1}{5}(1 - \cos 5), \frac{2}{5} \right\rangle \]
Homework

- Read Section 11.2.
- Exercises: 1–49 odd.