Line Integrals
MATH 311, *Calculus III*

J. Robert Buchanan

Department of Mathematics

Fall 2015
Motivation

Suppose we wish to find the mass of a piece of wire bent into the shape of a curve C.

If the density of the wire at (x, y, z) is given by $\rho(x, y, z)$, then in a section of the wire of length Δs the mass is approximately

$$\Delta m = \rho(x, y, z) \Delta s.$$

The mass of the wire is

$$m \approx \sum_{i=1}^{n} \rho(x_i, y_i, z_i) \Delta s_i.$$

The exact mass of the wire is

$$m = \lim_{\|P\| \to 0} \sum_{i=1}^{n} \rho(x_i, y_i, z_i) \Delta s_i$$

provided the limit exists and is the same for every choice of evaluation points.
We may adapt this approach to find the integral of other functions defined along curve C.

Definition

The line integral of $f(x, y, z)$ with respect to arc length along the oriented curve C in three-dimensional space is

$$\int_C f(x, y, z) \, ds = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta s_i$$

provided the limit exists and is the same for every choice of evaluation points.
Line Integral

We may adapt this approach to find the integral of other functions defined along curve C.

Definition
The **line integral of $f(x, y, z)$ with respect to arc length** along the oriented curve C in three-dimensional space is

$$\int_C f(x, y, z) \, ds = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta s_i$$

provided the limit exists and is the same for every choice of evaluation points.
Theorem (Evaluation Theorem)

Suppose that $f(x, y, z)$ is continuous in a region D containing the curve C and that C is described parametrically by $(x(t), y(t), z(t))$ for $a \leq t \leq b$, where $x(t)$, $y(t)$, and $z(t)$ have continuous first derivatives. Then

$$\int_C f(x, y, z) \, ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt.$$
Theorem (Evaluation Theorem)

Suppose that \(f(x, y) \) is continuous in a region \(D \) containing the curve \(C \) and that \(C \) is described parametrically by \((x(t), y(t)) \) for \(a \leq t \leq b \), where \(x(t) \) and \(y(t) \) have continuous first derivatives. Then

\[
\int_C f(x, y) \, ds = \int_a^b f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt.
\]
Example

Evaluate the line integral

\[\int_C 2x \, ds \]

where \(C \) is the portion of the parabola \(y = x^2 \) with endpoints \((0, 0)\) and \((1, 1)\).

Remark: we must describe the parabola parametrically.
Solution

\[x(t) = t \]
\[y(t) = t^2 \]

for \(0 \leq t \leq 1 \).

\[\int_C 2x \, ds = \int_0^1 2t \sqrt{(1)^2 + (2t)^2} \, dt \]
\[= \int_0^1 2t \sqrt{1 + 4t^2} \, dt \]
\[= \frac{1}{4} \int_1^5 u^{1/2} \, du \]
\[= \frac{1}{6} \left(5\sqrt{5} - 1 \right) \]
Example

A wire takes the shape of a semicircle $x^2 + y^2 = 1$ with $y \geq 0$. The linear density of the wire at any point is proportional to distance of the point from the line $y = 1$. Find the mass of the wire.
Solution

\[\rho(x, y) = k(1 - y) \quad \text{(density of wire)} \]
\[x(t) = \cos t \]
\[y(t) = \sin t \]

for \(0 \leq t \leq \pi \).
Solution

\[\rho(x, y) = k(1 - y) \quad \text{(density of wire)} \]
\[x(t) = \cos t \]
\[y(t) = \sin t \]

for \(0 \leq t \leq \pi \).

Therefore the mass of the wire is

\[
m = \int_C \rho(x, y) \, ds
= \int_0^\pi k(1 - \sin t) \sqrt{(-\sin t)^2 + (\cos t)^2} \, dt
= k \int_0^\pi (1 - \sin t) \, dt
= k(t + \cos t) \bigg|_0^\pi
= k(\pi - 2)\]

Arc Length

Theorem

For any piecewise-smooth curve C,

$$
\int_C 1 \, ds
$$

gives the arc length of the curve C.

Example

Find the arc length of the helix \((\sin t, t, \cos t)\) for \(0 \leq t \leq \pi\).
Example

Find the arc length of the helix \((\sin t, t, \cos t)\) for \(0 \leq t \leq \pi\).

\[
\begin{align*}
 s &= \int_C 1 \, ds \\
 &= \int_0^\pi \sqrt{(\cos t)^2 + (1)^2 + (-\sin t)^2} \, dt \\
 &= \int_0^\pi \sqrt{2} \, dt \\
 &= \pi \sqrt{2}
\end{align*}
\]
Smoothness

Definition
We say that curve C is smooth if C is described parametrically by $(x(t), y(t), z(t))$ for $a \leq t \leq b$, where $x(t)$, $y(t)$, and $z(t)$ have continuous first derivatives and

$$[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2 \neq 0$$

for $a \leq t \leq b$.

Definition
Suppose that curve C is $C = C_1 \cup C_2 \cup \ldots \cup C_n$ where each of the C_1, C_2, ..., C_n is smooth and the terminal point of C_i is the initial point of C_{i+1} for $i = 1, 2, \ldots, n-1$. In this case we say that C is piecewise-smooth.
Smoothness

Definition
We say that curve C is **smooth** if C is described parametrically by $(x(t), y(t), z(t))$ for $a \leq t \leq b$, where $x(t)$, $y(t)$, and $z(t)$ have continuous first derivatives and

$$[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2 \neq 0$$

for $a \leq t \leq b$.

Definition
Suppose that curve C is

$$C = C_1 \cup C_2 \cup \cdots \cup C_n$$

where each of the C_1, C_2, \ldots, C_n is smooth and the terminal point of C_i is the initial point of C_{i+1} for $i = 1, 2, \ldots, n - 1$. In this case we say that C is **piecewise-smooth**.
Result

Theorem
Suppose that \(f(x, y, z) \) is a continuous function in some region \(D \) containing the oriented curve \(C \). Then if \(C \) is piecewise-smooth with \(C = C_1 \cup C_2 \cup \cdots \cup C_n \), where \(C_1, C_2, \ldots, C_n \) are smooth and the terminal point of \(C_i \) is the initial point of \(C_{i+1} \) for \(i = 1, 2, \ldots, n - 1 \), we have

\[
\int_{-C} f(x, y, z) \, ds = \int_C f(x, y, z) \, ds
\]

and

\[
\int_C f(x, y, z) \, ds = \int_{C_1} f(x, y, z) \, ds + \int_{C_2} f(x, y, z) \, ds + \cdots + \int_{C_n} f(x, y, z) \, ds.
\]
Evaluate the line integral

\[\int_C (x + y) \, ds \]

where C is the right-angled path from $(1, 0)$ to $(1, 1)$ to $(0, 1)$.
Example (2 of 3)

\[C_1 : \begin{cases} x = 1 \\ y = t \end{cases} \text{ for } 0 \leq t \leq 1 \]

\[C_2 : \begin{cases} x = 1 - t \\ y = 1 \end{cases} \text{ for } 0 \leq t \leq 1 \]
\[\int_C (x + y) \, ds = \int_{C_1} (x + y) \, ds + \int_{C_2} (x + y) \, ds \]
\[= \int_0^1 (1 + t) \, dt + \int_0^1 (1 - t + 1) \, dt \]
\[= \frac{3}{2} + \int_0^1 (2 - t) \, dt \]
\[= \frac{3}{2} + \frac{3}{2} = 3 \]
Definition

The **line integral of** \(f(x, y, z) \) **with respect to** \(x \) along the oriented curve \(C \) in three-dimensional space is

\[
\int_C f(x, y, z) \, dx = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta x_i
\]

provided the limit exists and is the same for every choice of evaluation points.
Definition
The **line integral of** $f(x, y, z)$ **with respect to** y **along the oriented curve** C **in three-dimensional space** is

\[
\int_C f(x, y, z) \, dy = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta y_i
\]

provided the limit exists and is the same for every choice of evaluation points.
Definition

The **line integral of** $f(x, y, z)$ **with respect to** z along the oriented curve C in three-dimensional space is

$$\int_C f(x, y, z) \, dz = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta z_i$$

provided the limit exists and is the same for every choice of evaluation points.
Theorem (Evaluation Theorem)

Suppose that $f(x, y, z)$ is continuous in a region D containing the curve C and that C is described parametrically by $(x(t), y(t), z(t))$ for $a \leq t \leq b$, where $x(t)$, $y(t)$, and $z(t)$ have continuous first derivatives. Then

\[
\int_C f(x, y, z) \, dx = \int_a^b f(x(t), y(t), z(t))x'(t) \, dt,
\]

\[
\int_C f(x, y, z) \, dy = \int_a^b f(x(t), y(t), z(t))y'(t) \, dt,
\]

\[
\int_C f(x, y, z) \, dz = \int_a^b f(x(t), y(t), z(t))z'(t) \, dt.
\]
Examples

Compute the following line integrals over the path C which is the portion of the parabola $x = y^2$ from $(1, 1)$ to $(1, -1)$.

- $\int_C (x + y) \, dx$
- $\int_C (x + y) \, dy$
- $\int_C (x + y) \, ds$
Illustration of Curve C
Solution

The curve C is parameterized for $-1 \leq t \leq 1$ as

$$x = t^2 \quad y = -t$$

and then

$$\int_C (x + y) \, dx = \int_{-1}^{1} (t^2 - t)2t \, dt = -\frac{4}{3}$$

$$\int_C (x + y) \, dy = \int_{-1}^{1} (t^2 - t)(-1) \, dt = -\frac{2}{3}$$

$$\int_C (x + y) \, ds = \int_{-1}^{1} (t^2 - t)\sqrt{(2t)^2 + (-1)^2} \, dt \approx 1.21267$$
Theorem

Suppose that $f(x, y, z)$ is a continuous function in some region D containing the oriented curve C. Then, the following hold.

1. If C is piecewise-smooth, then

$$\int_{-C} f(x, y, z) \, dx = -\int_C f(x, y, z) \, dx.$$

2. If $C = C_1 \cup C_2 \cup \cdots \cup C_n$, where C_1, C_2, \ldots, C_n are smooth and the terminal point of C_i is the initial point of C_{i+1} for $i = 1, 2, \ldots, n - 1$, then

$$\int_C f(x, y, z) \, dx = \sum_{i=1}^n \int_{C_i} f(x, y, z) \, dx.$$

Remark: similar results hold for integrals with respect to y and z.
Example

Calculate the line integral

$$\int_C 2x \ dy + 4y \ dx$$

where C consists of the line segment from $(0, 0)$ to $(1, 0)$ followed by the quarter circle to $(0, 1)$ followed by the line segment to $(0, 0)$.
Parameterization of C

$C_1 : \begin{cases} x = t \\ y = 0 \end{cases}$ for $0 \leq t \leq 1$

$C_2 : \begin{cases} x = \cos t \\ y = \sin t \end{cases}$ for $0 \leq t \leq \frac{\pi}{2}$

$C_3 : \begin{cases} x = 0 \\ y = 1 - t \end{cases}$ for $0 \leq t \leq 1$
Solution

\[\int_C 2x \, dy + 4y \, dx = \int_{C_1} 2x \, dy + 4y \, dx + \int_{C_2} 2x \, dy + 4y \, dx + \int_{C_3} 2x \, dy + 4y \, dx \]

\[= \int_{C_1} 2x \, dy + 4y \, dx + \int_{C_2} 2x \, dy + 4y \, dx \]

\[+ \int_{C_3} 2x \, dy + 4y \, dx \]

\[= 0 + 0 \]

\[= \int_{C_2} 2x \, dy + 4y \, dx \]

\[= \int_0^{\pi/2} (2 \cos^2 t - 4 \sin^2 t) \, dt \]

\[= -\frac{\pi}{2} \]
Work

Suppose \(\mathbf{F}(x, y, z) = \langle f_1(x, y, z), f_2(x, y, z), f_3(x, y, z) \rangle \) represents a vector field function representing the force present on an object at location \((x, y, z)\).

The work done in moving the object along curve \(C \) parametrized by \((x(t), y(t), z(t))\) where \(a \leq t \leq b \) is

\[
W = \int_a^b \mathbf{F}(x, y, z) \cdot \mathbf{r}'(t) \, dt
\]

\[
= \int_C f_1(x, y, z) \, dx + \int_C f_2(x, y, z) \, dy + \int_C f_3(x, y, z) \, dz
\]

\[
= \int_C \langle f_1(x, y, z), f_2(x, y, z), f_3(x, y, z) \rangle \cdot \langle dx, dy, dz \rangle
\]

\[
= \int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}
\]
Example

Compute the work done by the force field \(\mathbf{F}(x, y, z) = \langle xy, 3z, 1 \rangle \) along the quarter ellipse parametrized by

\[
\begin{align*}
 x &= 2 \cos t \\
 y &= 3 \sin t \\
 z &= 1
\end{align*}
\]

from \((2, 0, 1)\) to \((0, 3, 1)\).
Illustration of Vector Field and Curve
Calculation of Work

\[W = \int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r} \]

\[= \int_0^{\pi/2} \langle 6 \cos t \sin t, 3, 1 \rangle \cdot \langle -2 \sin t, 3 \cos t, 0 \rangle \, dt \]

\[= \int_0^{\pi/2} 9 \cos t - 12 \cos t \sin^2 t \, dt \]

\[= \int_0^{\pi/2} 9 \cos t \, dt - 12 \int_0^{\pi/2} \cos t \sin^2 t \, dt \]

\[= 9 - 12 \int_0^1 u^2 \, du \]

\[= 5 \]
Remarks

If the orientation of the curve is generally in the same direction as the vector field, the force adds energy to the object and thus does *positive* work.

If the orientation of the curve is generally in the direction opposite the vector field, the force opposes the motion of the object and thus does *negative* work.
Homework

- Read Section 14.2.
- Exercises: 1–41 odd.