Lines and Planes in Space
MATH 311, *Calculus III*

J. Robert Buchanan

Department of Mathematics

Fall 2015
Lines and Points
Lines and Vectors

We can describe lines in \(\mathbb{R}^3 \) by referring to vectors in \(V_3 \).

Consider a nonzero vector \(\mathbf{a} \) and a point \(P_0 = (x_0, y_0, z_0) \). The vector with initial point \(P_0 \) in the direction of \(\mathbf{a} = \langle a_1, a_2, a_3 \rangle \) is

\[
\overrightarrow{P_0P} = t \mathbf{a}
\]

where \(t \) is a scalar.

If point \(P = (x, y, z) \) then

\[
\langle x - x_0, y - y_0, z - z_0 \rangle = t\langle a_1, a_2, a_3 \rangle.
\]

This vector equation can be re-written as a system of 3 linear equations.
The **parametric equations** for the line through \((x_0, y_0, z_0)\) in the direction of vector \(\mathbf{a} = \langle a_1, a_2, a_3 \rangle\):

\[
\begin{align*}
x &= x_0 + t a_1 \\
y &= y_0 + t a_2 \\
z &= z_0 + t a_3
\end{align*}
\]
The parametric equations for the line through \((x_0, y_0, z_0)\) in the direction of vector \(\mathbf{a} = \langle a_1, a_2, a_3 \rangle\):

\[
\begin{align*}
x &= x_0 + t a_1 \\
y &= y_0 + t a_2 \\
z &= z_0 + t a_3
\end{align*}
\]

If we combine the three equations and eliminate the parameter \(t\), then the symmetric equations for the line are

\[
\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}.
\]
Example (1 of 3)

Let $P_0 = (5, 1, 3)$ and $\mathbf{a} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and find the equation of the line through P_0 in the direction of \mathbf{a} in parametric and symmetric form.
Example (1 of 3)

Let $P_0 = (5, 1, 3)$ and $\mathbf{a} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k}$ and find the equation of the line through P_0 in the direction of \mathbf{a} in parametric and symmetric form.

Parametric Form:

\[
\begin{align*}
 x &= 5 + t \\
 y &= 1 + 4t \\
 z &= 3 - 2t
\end{align*}
\]

Symmetric Form:

\[
\frac{x - 5}{1} = \frac{y - 1}{4} = \frac{z - 3}{-2}
\]
Example (2 of 3)

Find the equation of the line which passes through the points $A = (2, 4, -3)$ and $B = (3, -1, 1)$. Where does this line intersect the xy-plane?
Example (2 of 3)

Find the equation of the line which passes through the points $A = (2, 4, -3)$ and $B = (3, -1, 1)$. Where does this line intersect the xy-plane?

The line is parallel to the vector:

$$
v = \overrightarrow{AB} = \langle 3 - 2, -1 - 4, 1 - (-3) \rangle = \langle 1, -5, 4 \rangle.
$$
Example (2 of 3)

Find the equation of the line which passes through the points $A = (2, 4, -3)$ and $B = (3, -1, 1)$. Where does this line intersect the xy-plane?

The line is parallel to the vector:

$$v = \overrightarrow{AB} = \langle 3 - 2, -1 - 4, 1 - (-3) \rangle = \langle 1, -5, 4 \rangle.$$

The parametric form of the line is:

$$\begin{align*}
x &= 2 + t \\
y &= 4 - 5t \\
z &= -3 + 4t
\end{align*}$$

The point of intersection is $(x, y, z) = (11/4, 1/4, 0)$.
Find the equation of the line which passes through the points $A = (2, 4, -3)$ and $B = (3, -1, 1)$. Where does this line intersect the xy-plane?

The line is parallel to the vector:

$$\mathbf{v} = \overrightarrow{AB} = \langle 3 - 2, -1 - 4, 1 - (-3) \rangle = \langle 1, -5, 4 \rangle.$$

The parametric form of the line is:

$$
\begin{align*}
x &= 2 + t \\
y &= 4 - 5t \\
z &= -3 + 4t
\end{align*}
$$

The line intersects the xy-plane when $z = 0$ which implies $t = 3/4$.

The point of intersection is $(x, y, z) = (11/4, 1/4, 0)$.

Example (3 of 3)

Do the following two lines intersect?

\[
\begin{align*}
 x &= 1 + t \\
 y &= -2 + 3t \\
 z &= 4 - t \\
 x &= 2s \\
 y &= 3 + s \\
 z &= -3 + 4s
\end{align*}
\]

If the lines intersect the lines must have a point in common. Solving the system of two equations in two unknowns:

\[
\begin{align*}
 1 + t &= 2s \\
 -2 + 3t &= 3 + s \\
 4 - t &= -3 + 4s
\end{align*}
\]

implies \(s = \frac{8}{5} \) and \(t = \frac{11}{5} \). However, using these \(s \) and \(t \) values makes the \(z \)-coordinates unequal. Thus the lines do not intersect.
Example (3 of 3)

Do the following two lines intersect?

\[
\begin{align*}
x & = 1 + t \\
y & = -2 + 3t \\
z & = 4 - t
\end{align*}
\quad
\begin{align*}
x & = 2s \\
y & = 3 + s \\
z & = -3 + 4s
\end{align*}
\]

If the lines intersect the lines must have a point in common. Solving the system of two equations in two unknowns:

\[
\begin{align*}
1 + t & = 2s \\
-2 + 3t & = 3 + s
\end{align*}
\]

implies \(s = 8/5 \) and \(t = 11/5 \).
Example (3 of 3)

Do the following two lines intersect?

\[x = 1 + t \quad x = 2s \]
\[y = -2 + 3t \quad y = 3 + s \]
\[z = 4 - t \quad z = -3 + 4s \]

If the lines intersect the lines must have a point in common. Solving the system of two equations in two unknowns:

\[1 + t = 2s \]
\[-2 + 3t = 3 + s \]

implies \(s = 8/5 \) and \(t = 11/5 \).

However, using these \(s \) and \(t \) values makes the \(z \)-coordinates unequal. Thus the lines do not intersect.
Parallel and Orthogonal Lines

Definition
Let l_1 and l_2 be two lines in \mathbb{R}^3, with parallel vectors \mathbf{a} and \mathbf{b}, respectively, and let θ be the angle between \mathbf{a} and \mathbf{b}.

1. The lines l_1 and l_2 are **parallel** whenever \mathbf{a} and \mathbf{b} are parallel.
2. If l_1 and l_2 intersect, then
 - the angle between l_1 and l_2 is θ and
 - the lines l_1 and l_2 are **orthogonal** whenever \mathbf{a} and \mathbf{b} are orthogonal.

Definition
Nonparallel, non-intersecting lines are called **skew** lines.
Parallel and Orthogonal Lines

Definition
Let \(l_1 \) and \(l_2 \) be two lines in \(\mathbb{R}^3 \), with parallel vectors \(\mathbf{a} \) and \(\mathbf{b} \), respectively, and let \(\theta \) be the angle between \(\mathbf{a} \) and \(\mathbf{b} \).

1. The lines \(l_1 \) and \(l_2 \) are **parallel** whenever \(\mathbf{a} \) and \(\mathbf{b} \) are parallel.
2. If \(l_1 \) and \(l_2 \) intersect, then
 - the angle between \(l_1 \) and \(l_2 \) is \(\theta \) and
 - the lines \(l_1 \) and \(l_2 \) are **orthogonal** whenever \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal.

Definition
Nonparallel, non-intersecting lines are called **skew** lines.
Planes in \mathbb{R}^3

A plane can be thought of as the collection of all lines orthogonal to a given line.
Planes and Vectors

If point $P_0 = (x_0, y_0, z_0)$ lies in the plane and vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is normal to the plane (i.e., orthogonal to every line in the plane) and if point $P = (x, y, z)$ is an arbitrary point in the plane, then

$\overrightarrow{P_0P}$ is orthogonal to \mathbf{a},
If point $P_0 = (x_0, y_0, z_0)$ lies in the plane and vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is normal to the plane (i.e., orthogonal to every line in the plane) and if point $P = (x, y, z)$ is an arbitrary point in the plane, then

- $\overrightarrow{P_0P}$ is orthogonal to \mathbf{a},
- $\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \langle a_1, a_2, a_3 \rangle = 0$, and
Planes and Vectors

If point $P_0 = (x_0, y_0, z_0)$ lies in the plane and vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is normal to the plane (i.e., orthogonal to every line in the plane) and if point $P = (x, y, z)$ is an arbitrary point in the plane, then

$\overrightarrow{P_0P}$ is orthogonal to \mathbf{a},

$\langle x - x_0, y - y_0, z - z_0 \rangle \cdot \langle a_1, a_2, a_3 \rangle = 0$, and

the equation of the plane is

$$a_1(x - x_0) + a_2(y - y_0) + a_3(z - z_0) = 0.$$
Example (1 of 2)

Find the equation of the plane through the point \((2, 4, -1)\) with normal vector \(\mathbf{n} = \langle 2, 3, 4 \rangle\).
Find the equation of the plane through the point $(2, 4, -1)$ with normal vector $\mathbf{n} = \langle 2, 3, 4 \rangle$.

$$\langle x - 2, y - 4, z - (-1) \rangle \cdot \langle 2, 3, 4 \rangle = 0$$

$$2x + 3y + 4z = 12$$
Example (2 of 2)

Find the equation of the plane containing the points $P = (1, 3, 2), Q = (3, -1, 6), \text{ and } R = (5, 2, 0)$.

First we must find a vector orthogonal to the plane containing the three points. Let $a = \overrightarrow{PQ} = \langle 2, -4, 4 \rangle$ and let $b = \overrightarrow{PR} = \langle 4, -1, -2 \rangle$, then using the cross product we have a vector perpendicular to the plane.

$$n = a \times b = \langle 12, 20, 14 \rangle$$

The equation of the plane is

$$\langle x - 1, y - 3, z - 2 \rangle \cdot \langle 12, 20, 14 \rangle = 0$$

or

$$6x + 10y + 7z = 50$$
Example (2 of 2)

Find the equation of the plane containing the points $P = (1, 3, 2)$, $Q = (3, -1, 6)$, and $R = (5, 2, 0)$. First we must find a vector orthogonal to the plane containing the three points.
Example (2 of 2)

Find the equation of the plane containing the points $P = (1, 3, 2)$, $Q = (3, -1, 6)$, and $R = (5, 2, 0)$. First we must find a vector orthogonal to the plane containing the three points.

Let $\mathbf{a} = \overrightarrow{PQ} = \langle 2, -4, 4 \rangle$ and let $\mathbf{b} = \overrightarrow{PR} = \langle 4, -1, -2 \rangle$, then using the cross product we have a vector perpendicular to the plane.

$$\mathbf{n} = \mathbf{a} \times \mathbf{b} = \langle 12, 20, 14 \rangle$$
Find the equation of the plane containing the points $P = (1, 3, 2)$, $Q = (3, -1, 6)$, and $R = (5, 2, 0)$. First we must find a vector orthogonal to the plane containing the three points.

Let $a = \overrightarrow{PQ} = \langle 2, -4, 4 \rangle$ and let $b = \overrightarrow{PR} = \langle 4, -1, -2 \rangle$, then using the cross product we have a vector perpendicular to the plane.

$$n = a \times b = \langle 12, 20, 14 \rangle$$

The equation of the plane is

$$\langle x - 1, y - 3, z - 2 \rangle \cdot \langle 12, 20, 14 \rangle = 0$$

$$6x + 10y + 7z = 50$$
Remarks

The equation of a plane in \mathbb{R}^3 has the form:

$$ax + by + cz = d$$

where not all of a, b, and c can be zero.
Remarks

- The equation of a plane in \mathbb{R}^3 has the form:

$$ax + by + cz = d$$

where not all of a, b, and c can be zero.

- If $ax + by + cz = d$ defines a plane, then $\mathbf{v} = \langle a, b, c \rangle$ is normal to the plane.
Remarks

- The equation of a plane in \mathbb{R}^3 has the form:

 \[ax + by + cz = d \]

 where not all of a, b, and c can be zero.

- If $ax + by + cz = d$ defines a plane, then $\mathbf{v} = \langle a, b, c \rangle$ is normal to the plane.

- An easy method for sketching a plane is to sketch the simplex of the plane defined by its intersections with the coordinate axes.
Parallel and Orthogonal Planes

Definition
Two planes with normal vectors \(\mathbf{a} \) and \(\mathbf{b} \) are

1. **parallel** if \(\mathbf{a} \) and \(\mathbf{b} \) are parallel.
2. **orthogonal** if \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal.
Example (1 of 3)

Are the planes defined by $x + 2y - 3z = 4$ and $2x + 4y - 6z = 1$ parallel?
Example (1 of 3)

Are the planes defined by $x + 2y - 3z = 4$ and $2x + 4y - 6z = 1$ parallel?
A normal vector to the first plane is $\mathbf{a} = \langle 1, 2, -3 \rangle$ while a normal vector to the second plane is $\mathbf{b} = \langle 2, 4, -6 \rangle$.
Are the planes defined by \(x + 2y - 3z = 4 \) and \(2x + 4y - 6z = 1 \) parallel?

A normal vector to the first plane is \(\mathbf{a} = \langle 1, 2, -3 \rangle \) while a normal vector to the second plane is \(\mathbf{b} = \langle 2, 4, -6 \rangle \).

Since \(\mathbf{b} \) is a scalar multiple of \(\mathbf{a} \) (namely \(\mathbf{b} = 2\mathbf{a} \)) then the normal vectors are parallel, which implies the original planes are parallel.
Find the angle between the planes

\[x + y + z = 1 \]
\[x - 2y + 3z = 2. \]
Example (2 of 3)

Find the angle between the planes

\[x + y + z = 1 \]
\[x - 2y + 3z = 2. \]

The angle between the planes will be the angle between their normal vectors.
Example (2 of 3)

Find the angle between the planes

\[x + y + z = 1 \]
\[x - 2y + 3z = 2. \]

The angle between the planes will be the angle between their normal vectors.

Let \(\mathbf{a} = \langle 1, 1, 1 \rangle \) and \(\mathbf{b} = \langle 1, -2, 3 \rangle \), then

\[
\mathbf{a} \cdot \mathbf{b} = \| \mathbf{a} \| \| \mathbf{b} \| \cos \theta
\]

\[
2 = \sqrt{42} \cos \theta
\]

\[
\theta \approx 1.25707 \approx 72.02^\circ
\]
Example (3 of 3)

Find the line of intersection of the two planes

\[x + y + z = 1 \]
\[x - 2y + 3z = 2. \]
Example (3 of 3)

Find the line of intersection of the two planes

\[
\begin{align*}
 x + y + z &= 1 \\
 x - 2y + 3z &= 2.
\end{align*}
\]

Eliminate \(x \) from the two equations and then treat \(z \) as the parameter.

\[
\begin{align*}
 1 - y - z &= x = 2 + 2y - 3z \\
 y &= -\frac{1}{3} + \frac{2}{3}z
\end{align*}
\]
Example (3 of 3)

Find the line of intersection of the two planes

\[x + y + z = 1 \]
\[x - 2y + 3z = 2. \]

Eliminate \(x \) from the two equations and then treat \(z \) as the parameter.

\[1 - y - z = x = 2 + 2y - 3z \]
\[y = -\frac{1}{3} + \frac{2}{3}z \]

Parametric Form:

\[x = \frac{4}{3} - \frac{5}{3}t, \quad y = -\frac{1}{3} + \frac{2}{3}t, \quad z = t \]
The distance from P_2 to the plane is $\left| \text{comp}_a \overrightarrow{P_1P_2} \right|$.
Distance from a Point to a Plane

If \(\mathbf{a} = \langle a, b, c \rangle \), \(P_1 = (x_1, y_1, z_1) \), and \(P_2 = (x_2, y_2, z_2) \) then

\[
\text{comp}_a \overrightarrow{P_1 P_2} = \frac{\mathbf{a} \cdot \overrightarrow{P_1 P_2}}{\| \mathbf{a} \|}
\]

\[
= \frac{\langle a, b, c \rangle \cdot \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle}{\sqrt{a^2 + b^2 + c^2}}
\]

\[
= \frac{ax_2 + by_2 + cz_2 - (ax_1 + by_1 + cz_1)}{\sqrt{a^2 + b^2 + c^2}}
\]

distance \(= \frac{|ax_2 + by_2 + cz_2 + d|}{\sqrt{a^2 + b^2 + c^2}} \)
Example (1 of 3)

Find the distance from \((\frac{1}{2}, 0, 1) \) to \(5x + y - z = 1 \).
Example (1 of 3)

Find the distance from \((\frac{1}{2}, 0, 1) \) to \(5x + y - z = 1 \).
Rather than trying to apply the distance formula from memory it may be easier to recall that the distance from the point to the plane is \(|\text{comp}_a \overrightarrow{P_1P_2}| \), where \(a \) is the normal vector to the plane and we are free to pick point \(P_1 \) to be any point in the plane.
Example (1 of 3)

Find the distance from \((\frac{1}{2}, 0, 1)\) to \(5x + y - z = 1\). Rather than trying to apply the distance formula from memory it may be easier to recall that the distance from the point to the plane is \(|\text{comp}_a \overrightarrow{P_1 P_2}|\), where \(a\) is the normal vector to the plane and we are free to pick point \(P_1\) to be any point in the plane. Let \(P_2 = (\frac{1}{2}, 0, 1)\), let \(P_1 = (0, 1, 0)\), and \(a = \langle 5, 1, -1 \rangle\), then

\[
|\text{comp}_a \overrightarrow{P_1 P_2}| = \left| \frac{\langle 1/2, -1, 1 \rangle \cdot \langle 5, 1, -1 \rangle}{\|\langle 5, 1, -1 \rangle\|} \right| = \frac{1}{6\sqrt{3}}.
\]
Example (2 of 3)

Find the distance between the planes

\[10x + 2y - 2z = 5 \]
\[5x + y - z = 1 \]
Example (2 of 3)

Find the distance between the planes

\[10x + 2y - 2z = 5 \]
\[5x + y - z = 1 \]

If the planes were not parallel we could immediately declare the distance between them is 0.
Example (2 of 3)

Find the distance between the planes

\[10x + 2y - 2z = 5 \]
\[5x + y - z = 1 \]

If the planes were not parallel we could immediately declare the distance between them is 0.

Pick a point in the second plane, say \(P_2 = (0, 1, 0) \) and find its distance to the first plane.
Example (2 of 3)

Find the distance between the planes

\[10x + 2y - 2z = 5 \]
\[5x + y - z = 1 \]

If the planes were not parallel we could immediately declare the distance between them is 0.

Pick a point in the second plane, say \(P_2 = (0, 1, 0) \) and find its distance to the first plane.

Note that \(P_1 = (1/2, 0, 0) \) is in the first plane and the normal vector to the first plane is \(\mathbf{a} = \langle 10, 2, -2 \rangle \).

\[
|\text{comp}_a \overrightarrow{P_1 P_2}| = \left| \frac{\langle -1/2, 1, 0 \rangle \cdot \langle 10, 2, -2 \rangle}{\|\langle 10, 2, -2 \rangle\|} \right| = \frac{1}{2\sqrt{3}}
\]
Example (3 of 3)
Find the distance between the skew lines

\[x = 1 + t, \quad y = -2 + 3t, \quad z = 4 - t, \quad \text{and} \]
\[x = 2s, \quad y = 3 + s, \quad z = -3 + 4s. \]
Example (3 of 3)

Find the distance between the skew lines

\[x = 1 + t, \quad y = -2 + 3t, \quad z = 4 - t, \quad \text{and} \]
\[x = 2s, \quad y = 3 + s, \quad z = -3 + 4s. \]

We must find the equations of two parallel planes, each containing one of the lines above.
Example (3 of 3)

Find the distance between the skew lines

\[x = 1 + t, \quad y = -2 + 3t, \quad z = 4 - t, \quad \text{and} \]

\[x = 2s, \quad y = 3 + s, \quad z = -3 + 4s. \]

We must find the equations of two parallel planes, each containing one of the lines above.

The common normal vector shared by the planes must be perpendicular to both lines.

\[\mathbf{a} = \langle 1, 3, -1 \rangle \times \langle 2, 1, 4 \rangle = \langle 13, -6, -5 \rangle \]
Example (3 of 3)

Find the distance between the skew lines

\[x = 1 + t, \quad y = -2 + 3t, \quad z = 4 - t, \quad \text{and} \]
\[x = 2s, \quad y = 3 + s, \quad z = -3 + 4s. \]

We must find the equations of two parallel planes, each containing one of the lines above.

The common normal vector shared by the planes must be perpendicular to both lines.

\[\mathbf{a} = \langle 1, 3, -1 \rangle \times \langle 2, 1, 4 \rangle = \langle 13, -6, -5 \rangle \]

Let \(P_1 = (1, -2, 4) \) be a point on the first line and let \(P_2 = (0, 3, -3) \) be a point on the second line.

\[|\text{comp}_a \overrightarrow{P_1P_2}| = \left| \frac{\langle -1, 5, -7 \rangle \cdot \langle 13, -6, -5 \rangle}{\|\langle 13, -6, -5 \rangle\|} \right| = \sqrt{\frac{32}{115}} \]
Homework

- Read Section 10.5.
- Exercises: 1–61 odd.