Stokes’ Theorem
MATH 311, *Calculus III*

J. Robert Buchanan

Department of Mathematics

Summer 2015
Background (1 of 2)

Recall: Green’s Theorem,

\[
\oint_C M(x, y) \, dx + N(x, y) \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA
\]

where \(C \) is a piecewise smooth, positively oriented, simple closed curve in the \(xy \)-plane enclosing region \(R \).

- Define the vector field \(\mathbf{F}(x, y) = \langle M(x, y), N(x, y), 0 \rangle \).
- Note that \(\nabla \times \mathbf{F} = \langle 0, 0, \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \rangle \).
- The component of \(\nabla \times \mathbf{F} \) along \(\mathbf{k} \) is \n \[
 (\nabla \times \mathbf{F}) \cdot \mathbf{k} = \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \mathbf{k} \cdot \mathbf{k} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}
\]
Thus we have developed the vector form of Green’s Theorem

\[\oint_C M(x, y) \, dx + N(x, y) \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA \]

\[\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_R (\nabla \times \mathbf{F}) \cdot \mathbf{k} \, dA \]

Today we will generalize this result to three dimensions.
Using the right-hand rule, curve C has positive orientation if it has the same orientation as the right hand’s fingers when the right thumb points in the direction of the normal \mathbf{n} to surface S. Otherwise C has negative orientation.
Stokes’ Theorem

Theorem (Stokes’ Theorem)
Suppose that S is an oriented, piecewise-smooth surface with unit normal vector \mathbf{n}, bounded by the simple closed, piecewise-smooth boundary curve ∂S having positive orientation. Let $\mathbf{F}(x, y, z)$ be a vector field whose components have continuous first partial derivatives in some open region containing S. Then,

$$
\int_{\partial S} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int \int_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS.
$$
Interpretation

Recalling that the unit tangent vector is

\[T(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \quad \iff \quad \mathbf{r}'(t) = \|\mathbf{r}'(t)\| \mathbf{T}(t) \]

and that differential arc length is defined as

\[ds = \|\mathbf{r}'(t)\| \, dt, \]

sometimes Stokes’ Theorem is written as

\[\int\int_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \oint_{\partial S} \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \oint_{\partial S} \mathbf{F} \cdot \mathbf{T} \, ds \]

where \(\mathbf{T} \) is the unit tangent in the direction of \(\partial S \).

Interpretation: The line integral of the tangential component of \(\mathbf{F} \) is equal to the flux of the curl of \(\mathbf{F} \). This integral is the average tendency of the flow of \(\mathbf{F} \) to rotate around path \(\partial S \).
Example (1 of 4)

Evaluate $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = -y^2\mathbf{i} + x\mathbf{j} + z^2\mathbf{k}$ and ∂S is the intersection of the plane $y + z = 2$ and the cylinder $x^2 + y^2 = 1$.
Example (2 of 4)

- Note that $\nabla \times \mathbf{F} = (1 + 2y)\mathbf{k}$.
- There are many surfaces which have ∂S as a boundary, choose the elliptical disk bounded by ∂S in the plane $y + z = 2$.
- The unit normal to this surface is $\mathbf{n} = \frac{1}{\sqrt{2}}\langle 0, 1, 1 \rangle$.
Example (3 of 4)
Example (4 of 4)

According to Stokes’ Theorem

\[\oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_{S} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS \]

\[= \iint_{S} (1 + 2y) \mathbf{k} \cdot \frac{1}{\sqrt{2}} \langle 0, 1, 1 \rangle \, dS \]

\[= \iint_{S} \frac{1}{\sqrt{2}} (1 + 2y) \, dS \]

\[= \iint_{R} (1 + 2y) \, dA \]

\[= \int_{0}^{2\pi} \int_{0}^{1} (1 + 2r \sin \theta) r \, dr \, d\theta \]

\[= \int_{0}^{2\pi} \int_{0}^{1} r \, dr \, d\theta \]

\[= \pi \]
Example (1 of 4)

Evaluate \(\int \int_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS \) where \(\mathbf{F}(x, y, z) = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k} \)

and \(S \) is the part of the sphere \(x^2 + y^2 + z^2 = 4 \) that lies inside the cylinder \(x^2 + y^2 = 1 \) and above the \(xy \)-plane.
Surface S is bounded by a circle formed by the intersection of the sphere of radius 2 and the cylinder of radius 1.

We can describe ∂S using the vector-valued function

$$r(t) = \langle \cos t, \sin t, \sqrt{3} \rangle,$$

with $0 \leq t \leq 2\pi$.
Example (3 of 4)
Example (4 of 4)

According to Stokes’ Theorem

\[\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS \]

\[= \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} \]

\[= \int_0^{2\pi} \mathbf{F}(\cos t, \sin t, \sqrt{3}) \cdot \langle -\sin t, \cos t, 0 \rangle \, dt \]

\[= \sqrt{3} \int_0^{2\pi} (\cos^2 t - \sin^2 t) \, dt \]

\[= \sqrt{3} \int_0^{2\pi} \cos 2t \, dt \]

\[= 0 \]
An Identity

Show that \(\oint \mathbf{C} (f \nabla f) \cdot d\mathbf{r} = 0. \)

\[
\oint \mathbf{C} (f \nabla f) \cdot d\mathbf{r} = \iiint \mathbf{S} (\nabla \times (f \nabla f)) \cdot \mathbf{n} \, dS
\]

\[
= \iiint \mathbf{S} (\nabla \times \langle f \frac{\partial f}{\partial x}, f \frac{\partial f}{\partial y}, f \frac{\partial f}{\partial z} \rangle) \cdot \mathbf{n} \, dS
\]

\[
= \iiint \mathbf{S} 0 \cdot \mathbf{n} dS
\]

\[
= 0
\]
Let \(P = (x_0, y_0, z_0) \) be any point in a vector field \(\mathbf{F} \) and let \(S_a \) be a circular disk of radius \(a > 0 \) centered at \(P \). Let \(C_a \) be the boundary of \(S_a \).
Average value of \((\nabla \times \mathbf{F}) \cdot \mathbf{n}\) on surface \(S_a\):

\[
[(\nabla \times \mathbf{F}) \cdot \mathbf{n}]_{P_a} = \frac{1}{\pi a^2} \int \int_{S_a} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS
\]

where \(\pi a^2\) is the area of \(S_a\) and point \(P_a \in S_a\) by the Integral Mean Value Theorem.
Interpretation of the Curl (2 of 3)

Average value of \((\nabla \times \mathbf{F}) \cdot \mathbf{n}\) on surface \(S_a\):

\[
[(\nabla \times \mathbf{F}) \cdot \mathbf{n}]_{P_a} = \frac{1}{\pi a^2} \int \int_{S_a} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS
\]

where \(\pi a^2\) is the area of \(S_a\) and point \(P_a \in S_a\) by the Integral Mean Value Theorem.

By Stokes’ Theorem

\[
\oint_{C_a} \mathbf{F} \cdot d\mathbf{r} = \int \int_{S_a} (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS
\]

\[
= \pi a^2 \left[(\nabla \times \mathbf{F}) \cdot \mathbf{n}\right]_{P_a}
\]
Interpretation of the Curl (3 of 3)

\[
[(\nabla \times \mathbf{F}) \cdot \mathbf{n}]_{Pa} = \frac{1}{\pi a^2} \oint_{C_a} \mathbf{F} \cdot d\mathbf{r}
\]

\[
\lim_{a \to 0^+} [(\nabla \times \mathbf{F}) \cdot \mathbf{n}]_{Pa} = \lim_{a \to 0^+} \frac{1}{\pi a^2} \oint_{C_a} \mathbf{F} \cdot d\mathbf{r}
\]

\[
[(\nabla \times \mathbf{F}) \cdot \mathbf{n}]_{P} = \lim_{a \to 0^+} \frac{1}{\pi a^2} \oint_{C_a} \mathbf{F} \cdot \mathbf{T} \, ds
\]

If \(\mathbf{F} \) describes the flow of a fluid then \(\oint_{C} \mathbf{F} \cdot \mathbf{T} \, ds \) is the \textbf{circulation around} \(C \), the average tendency of the fluid to circulate around the curve.
Remarks

- $[⟨∇ \times F⟩ \cdot n]_P$ attains its maximum when $∇ \times F$ is parallel to n.
- We can define $\text{rot } F = (∇ \times F) \cdot n$. This quantity is the rotation of the vector field at a point.
- F is an irrotational vector field if and only if $∇ \times F = 0$.
Example

Suppose $\mathbf{F} = \langle 3y, 4z, -6x \rangle$. Find the direction of the maximum value of $(\nabla \times \mathbf{F}) \cdot \mathbf{n}$.
Example

Suppose $\mathbf{F} = \langle 3y, 4z, -6x \rangle$. Find the direction of the maximum value of $(\nabla \times \mathbf{F}) \cdot \mathbf{n}$.

Since $\nabla \times \mathbf{F} = \langle -4, 6, -3 \rangle$, the maximum of $(\nabla \times \mathbf{F}) \cdot \mathbf{n}$ will occur in the direction of

$$\mathbf{n} = \frac{\langle -4, 6, -3 \rangle}{\|\langle -4, 6, -3 \rangle\|} = \frac{1}{\sqrt{61}} \langle -4, 6, -3 \rangle.$$
Irrotational Vector Fields

Theorem
Suppose that $\mathbf{F}(x, y, z)$ has continuous partial derivatives throughout a simply connected region D, then $\nabla \times \mathbf{F} = \mathbf{0}$ in D if and only if $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every simple closed curve C in D.
Proof (1 of 2)

- Suppose $\nabla \times \mathbf{F} = 0$.
- According to Stokes’ Theorem

\[
\oint \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS = \iint_S 0 \, dS = 0.
\]
Proof (2 of 2)

> Suppose $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every simple closed curve C.
> If at some point P, $(\nabla \times \mathbf{F}) \neq \mathbf{0}$, then by continuity there exists a subregion of D on which $(\nabla \times \mathbf{F}) \neq \mathbf{0}$.
> In the subregion choose a circular disk whose normal \mathbf{n} is parallel to $\nabla \times \mathbf{F}$.

\[
\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, dS \neq 0
\]

which contradicts our first assumption.
Theorem

Suppose that $\mathbf{F}(x, y, z)$ has continuous first partial derivatives throughout a simply connected region D, then the following statements are equivalent.

1. \mathbf{F} is conservative in D, i.e. $\mathbf{F} = \nabla f$.
2. $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D.
3. \mathbf{F} is irrotational in D, i.e. $\nabla \times \mathbf{F} = \mathbf{0}$ in D.
4. $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every simple closed curve in D.
Example

Let $\mathbf{F}(x, y, z) = y^2\mathbf{i} + (2xy + e^{3z})\mathbf{j} + 3ye^{3z}\mathbf{k}$ and show that \mathbf{F} is conservative.
Example

Let $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$ and show that \mathbf{F} is conservative.

We can accomplish this by showing that $\nabla \times \mathbf{F} = 0$.

$$\nabla \times \mathbf{F} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^2 & 2xy + e^{3z} & 3ye^{3z}
\end{vmatrix} = \langle 0, 0, 0 \rangle$$
Homework

- Read Section 14.8.
- Exercises: 1–33 odd