Surface Integrals
MATH 311, *Calculus III*

J. Robert Buchanan

Department of Mathematics

Summer 2015
Background

In calculus we have studied several types of definite integrals:
In calculus we have studied several types of definite integrals:

1. line integral
In calculus we have studied several types of definite integrals:

1. line integral
2. double integral
Background

In calculus we have studied several types of definite integrals:

1. line integral
2. double integral
3. triple integral
In calculus we have studied several types of definite integrals:

1. line integral
2. double integral
3. triple integral

Today we study the **surface integral**.
Motivation

Suppose we plot the surface $z = x + y^2$ and we color each point on the surface according to the value of its y-coordinate. The surface will appear to have stripes perpendicular to the y-axis.
Question

Keeping the previous surface plot in mind, what does it mean to integrate \(f(x, y, z) = y \) over the surface defined as \(z = x + y^2 \)?
Question

Keeping the previous surface plot in mind, what does it mean to integrate \(f(x, y, z) = y \) over the surface defined as \(z = x + y^2 \)?

Remarks:

- this is not the same as finding the volume beneath the surface,
 \[
 \int\int_{R} (x + y^2) \, dA
 \]
- it is not integrating \(f(x, y, z) \) over the volume beneath the surface,
 \[
 \int\int\int_{Q} y \, dV
 \]
- nor is it integrating \(f(x, y, z) \) over the projection of the surface in the xy-plane
 \[
 \int\int_{R} y \, dA
 \]
Riemann Sum

Given a function \(g(x, y, z) \) defined on a surface \(S \subset \mathbb{R}^3 \):

1. let \(P = \{S_1, S_2, \ldots, S_n\} \) be a partition of \(S \),
2. for each \(i = 1, 2, \ldots, n \) select an evaluation point \((x_i, y_i, z_i) \in S_i \),
3. let \(\Delta S_i \) be the surface area of \(S_i \),

then a Riemann sum approximation to the surface integral is

\[
\sum_{i=1}^{n} g(x_i, y_i, z_i) \Delta S_i.
\]
Each partition element S_i has a **diameter** defined as the maximum distance between any two points in S_i.

Define the norm of the partition $\|P\|$ to be the maximum of all the diameters of the partition elements.
Surface Integral

Definition

The **surface integral** of a function \(g(x, y, z) \) over a surface \(S \subset \mathbb{R}^3 \) is denoted

\[
\iint_S g(x, y, z) \, dS
\]

and is defined as

\[
\iint_S g(x, y, z) \, dS = \lim_{\|P\| \to 0} \sum_{i=1}^{n} g(x_i, y_i, z_i) \Delta S_i
\]

provided the limit exists and is the same for all choices of the evaluation points \((x_i, y_i, z_i)\).
Surface Integral

Definition

The **surface integral** of a function $g(x, y, z)$ over a surface $S \subset \mathbb{R}^3$ is denoted

$$\iint_S g(x, y, z) \, dS$$

and is defined as

$$\iint_S g(x, y, z) \, dS = \lim_{\|P\| \to 0} \sum_{i=1}^{n} g(x_i, y_i, z_i) \Delta S_i$$

provided the limit exists and is the same for all choices of the evaluation points (x_i, y_i, z_i).

Remark: if $g(x, y, z) = 1$ then the surface integral produces the surface area of S.
Suppose the surface S can be described as $z = f(x, y)$ (similar derivations follow if $y = h(x, z)$ or $x = k(y, z)$), then the integrand

$$g(x, y, z) = g(x, y, f(x, y))$$

is a function to x and y only.

Let R be the projection of S into the xy-plane and let $P = \{R_1, R_2, \ldots, R_n\}$ be an inner partition of R.

For each $i = 1, 2, \ldots, n$, let (x_i, y_i) be the point in R_i closest to the origin. The evaluation points for the Riemann sum will be $(x_i, y_i, f(x_i, y_i))$.
The surface area element S_i can be approximated by a tangent parallelogram T_i to the surface at the point $(x_i, y_i, f(x_i, y_i))$. The vectors $\langle 1, 0, f_x(x_i, y_i, z_i) \rangle$ and $\langle 0, 1, f_y(x_i, y_i, z_i) \rangle$ are parallel to two of the adjacent sides of T_i.

A normal vector to the surface (and T_i) at (x_i, y_i, z_i) is

$$n_i = \langle 0, 1, f_y \rangle \times \langle 1, 0, f_x \rangle = \langle f_x, f_y, -1 \rangle.$$

The area of T_i is

$$\|n_i\| = \sqrt{(f_x)^2 + (f_y)^2 + 1} \Delta A_i$$

where ΔA_i is the area of R_i.

Evaluating a Surface Integral (2 of 3)
Evaluating a Surface Integral (3 of 3)

Theorem (Evaluation Theorem)

If the surface S is given by $z = f(x, y)$ for (x, y) in the region $R \subset \mathbb{R}^2$, where f has continuous first partial derivatives, then

$$
\iint_S g(x, y, z) \, dS = \iint_R g(x, y, f(x, y)) \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dA.
$$

Proof.

$$
\begin{align*}
\iint_S g(x, y, z) \, dS &= \lim_{\|P\| \to 0} \sum_{i=1}^{n} g(x_i, y_i, f(x_i, y_i)) \sqrt{(f_x)^2 + (f_y)^2 + 1} \Delta A_i \\
&= \iint_R g(x, y, f(x, y)) \sqrt{(f_x)^2 + (f_y)^2 + 1} \, dA
\end{align*}
$$
Example (1 of 2)

Evaluate the surface integral \(\iint_S y \, dS \) where \(S \) is the surface \(z = x + y^2 \) for \(0 \leq x \leq 1 \) and \(0 \leq y \leq 2 \).
Example (2 of 2)

\[
\int\int_S y \, dS = \int\int_R y \sqrt{(1)^2 + (2y)^2 + 1} \, dA
\]
\[
= \int_0^2 \int_0^1 y \sqrt{2 + 4y^2} \, dx \, dy
\]
\[
= \int_0^2 y \sqrt{2 + 4y^2} \, dy
\]
\[
= \frac{1}{8} \int_2^{18} u^{1/2} \, du
\]
\[
= \frac{1}{12} u^{3/2} \bigg|_2^{18}
\]
\[
= \frac{13\sqrt{2}}{3}
\]
Example (1 of 3)

Evaluate the surface integral \(\int \int_S x^2 \, dS \) where \(S \) is the unit sphere centered at the origin.
Example (2 of 3)

Let the western hemisphere of the unit sphere be the surface where
\[x = \sqrt{1 - y^2 - z^2}. \]

\[
\iint_S x^2 \, dS = 2 \iint_{S'} x^2 \, dS \quad (S'\text{: western hemisphere})
\]

\[
= 2 \iint_R (1 - y^2 - z^2) \sqrt{\frac{y^2}{1 - y^2 - z^2} + \frac{z^2}{1 - y^2 - z^2} + 1} \, dA
\]

\[
= 2 \iint_R \frac{1 - y^2 - z^2}{\sqrt{1 - x^2 - y^2}} \, dA
\]

\[
= 2 \iint_R \sqrt{1 - x^2 - y^2} \, dA
\]
Example (3 of 3)

Evaluate the double integral in polar coordinates.

\[\int \int_S x^2 \, dS = 2 \int \int_R \sqrt{1 - x^2 - y^2} \, dA \]

\[= 2 \int_0^{2\pi} \int_0^1 \sqrt{1 - r^2} r \, dr \, d\theta \]

\[= 4\pi \int_0^1 \sqrt{1 - r^2} r \, dr \]

\[= 4\pi \int_1^0 u^{1/2} \left(-\frac{1}{2} \right) \, du \]

\[= 2\pi \int_0^1 u^{1/2} \, du \]

\[= \frac{4\pi}{3} \]
Flux and Flux Integrals

Suppose S is a surface in \mathbb{R}^3 and $F(x, y, z)$ is a vector field defined in \mathbb{R}^3.

If n is a unit normal vector to S then $F \cdot n$ is a scalar function which can be thought of as the \textbf{component of F perpendicular to} S.
Suppose S is a surface in \mathbb{R}^3 and $F(x, y, z)$ is a vector field defined in \mathbb{R}^3.

If n is a unit normal vector to S then $F \cdot n$ is a scalar function which can be thought of as the component of F perpendicular to S.

Definition

The surface integral $\iint_S F \cdot n \, dS$ is called the flux integral of F over S or simply the flux of F over S.
Suppose $\mathbf{F}(x, y, z) = yi + xj + zk$ and S is the boundary of the region enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane $z = 0$. Calculate the flux of \mathbf{F} over S.
Example (2 of 4)

On the plane $z = 0$ the downward normal is $\mathbf{n} = \langle 0, 0, -1 \rangle$.

\[
\iint_{S_1} \mathbf{F}(x, y, z) \cdot \mathbf{n} \, dS = \iint_{S_1} \langle y, x, 0 \rangle \cdot \langle 0, 0, -1 \rangle \, dS \\
= \iint_{S_1} 0 \, dS \\
= 0
\]
Example (3 of 4)

On the paraboloid $z + x^2 + y^2 = 1$ the upward unit normal is

$$n = \frac{\nabla (z + x^2 + y^2)}{\|\nabla (z + x^2 + y^2)\|} = \frac{\langle 2x, 2y, 1 \rangle}{\sqrt{4x^2 + 4y^2 + 1}}.$$

$$\int \int_{S_2} F(x, y, z) \cdot n \, dS$$

$$= \int \int_{S_2} \langle y, x, 1 - x^2 - y^2 \rangle \cdot \frac{\langle 2x, 2y, 1 \rangle}{\sqrt{4x^2 + 4y^2 + 1}} dS$$

$$= \int \int_{S_2} \frac{2xy + 2xy + 1 - x^2 - y^2}{\sqrt{4x^2 + 4y^2 + 1}} dS$$

$$= \int \int_{R} \frac{4xy + 1 - x^2 - y^2}{\sqrt{4x^2 + 4y^2 + 1}} \sqrt{4x^2 + 4y^2 + 1} \, dA$$

$$= \int \int_{R} 4xy + 1 - x^2 - y^2 \, dA$$
Example (4 of 4)

\[
\begin{align*}
\iiint_{S_2} F(x, y, z) \cdot n \, dS &= \iiint_R 4xy + 1 - x^2 - y^2 \, dA \\
&= \int_0^{2\pi} \int_0^1 (4r^2 \sin \theta \cos \theta + 1 - r^2) r \, dr \, d\theta \\
&= 2\pi \int_0^1 (r - r^3) \, dr \\
&= \frac{\pi}{2}
\end{align*}
\]

Thus the total flux is

\[
\iiint_S F \cdot n \, dS = \iiint_{S_1} F \cdot n \, dS + \iiint_{S_2} F \cdot n \, dS = 0 + \frac{\pi}{2} = \frac{\pi}{2}.
\]
Example (1 of 3)

Suppose \(\mathbf{F}(x, y, z) = z\mathbf{i} + y\mathbf{j} + x\mathbf{k} \) and \(S \) is the boundary of the unit sphere. Calculate the flux of \(\mathbf{F} \) over \(S \).
Example (2 of 3)

The unit outward normal on the sphere $x^2 + y^2 + z^2 = 1$ is

$$\mathbf{n} = \frac{\nabla (x^2 + y^2 + z^2)}{\|\nabla (x^2 + y^2 + z^2)\|} = \frac{\langle 2x, 2y, 2z \rangle}{\sqrt{4x^2 + 4y^2 + 4z^2}} = \langle x, y, z \rangle$$

when $x^2 + y^2 + z^2 = 1$.

$$\int \int \int_{S} \mathbf{F} \cdot \mathbf{n} dS = 2 \int \int \int_{S'} \mathbf{F} \cdot \mathbf{n} dS \quad (S': \text{northern hemisphere})$$

$$= 2 \int \int \int_{S'} \langle z, y, x \rangle \cdot \langle x, y, z \rangle dS$$

$$= 2 \int \int \int_{S'} (2xz + y^2) dS$$

$$= 2 \int \int_{R} \frac{2xz + y^2}{\sqrt{1 - x^2 - y^2}} dA$$
Example (3 of 3)

$$\int \int_S \mathbf{F} \cdot \mathbf{n} \, dS = 2 \int \int_R \frac{2xz + y^2}{\sqrt{1 - x^2 - y^2}} \, dA$$

$$= 2 \int_0^{2\pi} \int_0^1 \frac{2r^2 \cos \theta \sqrt{1 - r^2} + r^3 \sin^2 \theta}{\sqrt{1 - r^2}} \, dr \, d\theta$$

$$= 2 \int_0^{2\pi} \int_0^1 \frac{r^3 \sin^2 \theta}{\sqrt{1 - r^2}} \, dr \, d\theta$$

$$= \int_0^{2\pi} \int_0^1 \frac{r^3 (1 - \cos 2\theta)}{\sqrt{1 - r^2}} \, dr \, d\theta$$

$$= 2\pi \int_0^1 \frac{r^3}{\sqrt{1 - r^2}} \, dr$$

$$= \frac{4\pi}{3}$$
Interpretation of Flux

Remarks:

- If F represents the direction of flow of a fluid through a thin membrane represented by S, then the flux

$$\iint_S F \cdot n \, dS$$

is the volume of fluid passing through S.

- If the fluid has density given by the scalar function $\rho(x, y, z)$ then

$$\iint_S \rho F \cdot n \, dS$$

is the mass of fluid passing through S.

Remarks:

- If \mathbf{F} represents the direction of flow of a fluid through a thin membrane represented by S, then the flux

$$\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$$

is the volume of fluid passing through S.

- If the fluid has density given by the scalar function $\rho(x, y, z)$ then

$$\iint_S \rho \mathbf{F} \cdot \mathbf{n} \, dS$$

is the mass of fluid passing through S.
Application: Heat Flow

Definition
If the temperature of an object at point \((x, y, z)\) is given by \(u(x, y, z)\), then the heat flow is the vector field

\[
F = -\kappa \nabla u
\]

where \(\kappa\) is the thermal conductivity of the substance. The rate of heat flow across a surface \(S\) is given by the surface integral

\[
\iint_S F \cdot n \, dS = -\kappa \iint_S \nabla u \cdot n \, dS.
\]

where \(n\) is the unit normal vector to the surface.
Example

The temperature u in a metal ball is proportional to the square of the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius $a > 0$ with center at the center of the ball.
Let κ be the thermal conductivity of the metal.

$$u(x, y, z) = C(x^2 + y^2 + z^2)$$

$$F(x, y, z) = -\kappa \nabla u = -2\kappa C \langle x, y, z \rangle$$

$$n = \frac{1}{a} \langle x, y, z \rangle$$

Thus

$$\int \int_S F \cdot n \, dS = \int \int_S -\frac{2\kappa C}{a} (x^2 + y^2 + z^2) \, dS$$

$$= \int \int_S -\frac{2\kappa C}{a} a^2 \, dS$$

$$= -2\kappa Ca \int \int_S 1 \, dS = -8\kappa C\pi a^3.$$
Application: Electrostatics

Definition
If \(\mathbf{E} \) is an electric field, then the surface integral

\[
\iint_S \mathbf{E} \cdot \mathbf{n} \, dS
\]

is called the **electric flux** of \(\mathbf{E} \) through surface \(S \). \textbf{Gauss’s Law} states that the net charge enclosed by a closed surface \(S \) is

\[
Q = \epsilon_0 \iint_S \mathbf{E} \cdot \mathbf{n} \, dS
\]

where the constant \(\epsilon_0 \approx 8.8542 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2 \).
Example

Find the charge contained in the solid hemisphere $x^2 + y^2 + z^2 \leq a^2$ with $z \geq 0$ if the electric field is $\mathbf{E}(x, y, z) = \langle x, y, 2z \rangle$.
On the surface S_1, $x^2 + y^2 \leq a^2$ and $z = 0$ the unit outward normal is $\mathbf{n} = \langle 0, 0, -1 \rangle$.

\[
Q = \epsilon_0 \int\int_{S_1} \mathbf{E} \cdot \mathbf{n} \, dS
\]

\[
= \epsilon_0 \int\int_{S_1} \langle x, y, 0 \rangle \cdot \langle 0, 0, -1 \rangle \, dS
\]

\[
= \epsilon_0 \int\int_{S_1} 0 \, dS
\]

\[
= 0
\]
Solution (2 of 3)

On the surface S_2, $x^2 + y^2 + z^2 \leq a^2$ and $z > 0$ the unit outward normal is $\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$.

\[
Q = \varepsilon_0 \int \int_{S_2} \mathbf{E} \cdot \mathbf{n} \, dS
\]

\[
= \frac{\varepsilon_0}{a} \int \int_{S_2} \langle x, y, 2z \rangle \cdot \langle x, y, z \rangle \, dS
\]

\[
= \frac{\varepsilon_0}{a} \int \int_{S_2} (x^2 + y^2 + 2z^2) \, dS
\]

\[
= \frac{\varepsilon_0}{a} \int \int_{S_2} (2a^2 - x^2 - y^2) \, dS
\]

\[
= \frac{\varepsilon_0}{a} \int \int_{R} (2a^2 - x^2 - y^2) \frac{a}{\sqrt{a^2 - x^2 - y^2}} \, dA
\]

\[
= \varepsilon_0 \int \int_{R} \frac{2a^2 - x^2 - y^2}{\sqrt{a^2 - x^2 - y^2}} \, dA
\]
Solution (3 of 3)

\[Q = \epsilon_0 \int_0^{2\pi} \int_0^a \frac{2a^2 r - r^3}{\sqrt{a^2 - r^2}} \, dr \, d\theta \]
\[= 2\pi \epsilon_0 \int_0^a \frac{2a^2 r - r^3}{\sqrt{a^2 - r^2}} \, dr \]
\[= 2\pi \epsilon_0 \int_0^a \left[r \sqrt{a^2 - r^2} + \frac{a^2 r}{\sqrt{a^2 - r^2}} \right] \, dr \]
\[= 2\pi \epsilon_0 \left[-\frac{1}{3} (a^2 - r^2)^{3/2} - a^2 \sqrt{a^2 - r^2} \right]_0^a \]
\[= 2\pi \epsilon_0 \left[\frac{a^3}{3} + a^3 \right] \]
\[= \frac{8}{3} \pi a^3 \epsilon_0 \]
Homework

- Read Section 14.6.
- Exercises: 19–69 odd