1. (10 points each) Evaluate the following double integrals.

 (a) \(\iint_R (y - x) \, dA \), where \(R \) in the first quadrant is bounded by the curves \(x = 0 \),
 \(y = 0 \), and \(x = 3 - 2y^2 \).

 (b) \(\iint_R e^{-x^2-y^2} \, dA \), where \(R \) is the region bounded by the curves \(x = -\sqrt{4-y^2} \) and
 the \(y \)-axis.
2. (12 points) Find the local minimum and local maximum values and the saddle points (if any) of the following function:

\[f(x, y) = x^3 y + 12x^2 - 8y. \]
3. (5 points each) If \(f(u, v) = ve^{uv} \) and \(u = x + 2y \) and \(v = x/y \), then find

(a) \(\frac{\partial f}{\partial x} \)

(b) \(\frac{\partial f}{\partial y} \)
4. (5 points each) Consider the function $f(x, y) = xe^{-y} + 3y$ and the point with coordinates $(x_0, y_0) = (1, 0)$.

(a) Find the gradient of $f(x, y)$.

(b) Find the direction of the minimum rate of change of $f(x, y)$ at (x_0, y_0).

(c) Find the magnitude of the maximum rate of change of $f(x, y)$ at (x_0, y_0).

(d) Find the directional derivative of $f(x, y)$ at (x_0, y_0) in the direction of $u = (-1, 2)$.
5. (11 points) Find the linear approximation of the function

\[f(x, y) = \sqrt{20 - x^2 - 7y^2} \]

at \((x, y) = (2, 1)\) and use it to approximate \(f(1.95, 1.08)\).
6. (12 points) Use Lagrange Multipliers to find the maximum and minimum values of
\(f(x, y) = x^2 y \) subject to the constraint, \(x^2 + 2y^2 = 6. \)
7. (15 points) A lamina occupies the region $R = \{(x, y) \mid x^2 + y^2 \leq 1\}$ in the first quadrant. The density of the lamina is equal to its distance from the origin. Find the mass, moments about the x and y-axes, and the center of mass of the lamina.