Please answer the following questions. **Answers without justifying work will receive no credit.** Partial credit will be given as appropriate, do not leave any problem blank.

1. (5 points) For an arbitrary continuous function $f(x, y)$ write down the equivalent iterated integral in the opposite order of integration to the one shown below.

$$
\int_{0}^{2} \int_{x^2}^{4} f(x, y) \, dy \, dx
$$

2. (10 points) For an arbitrary continuous function $f(x, y, z)$ convert the following triple integral to spherical coordinates.

$$
\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{\frac{\sqrt{2-x^2-y^2}}{x^2+y^2}} f(x, y, z) \, dz \, dy \, dx
$$
3. (10 points) Determine if the following vector field is conservative. If it is, find a potential function.

\[\mathbf{F}(x, y) = (y \cos x, \sin x - y) \]

4. (12 points) Find the volume of the region above \(z = x^2 + y^2 \) and below \(z = 8 - x^2 - y^2 \).
5. (10 points) Evaluate the line integral

\[\int_C (x + y) \, dy \]

where \(C \) is the portion of \(x = y^2 \) from \((1, 1)\) to \((1, -1)\).

6. (10 points) Evaluate the triple integral

\[\iiint_Q \sqrt{x^2 + y^2 + z^2} \, dV \]

where \(Q \) is bounded by \(z = \sqrt{9 - x^2 - y^2} \) and the \(xy \)-plane.
7. (10 points) If \(\mathbf{F}(x, y) = (4xy - 2x)i + (2x^2 - x)j \) find the work done moving along \(y = x^2 \) from \((-2, 4)\) to \((2, 4)\).

8. (10 points) Compute the volume of the solid region bounded by the following surfaces.

\[
z = 1 - x^2, \quad z = 0, \quad y = 2, \quad y = 4
\]
9. (13 points) Use Green’s Theorem to evaluate the following line integral.

\[\int_C ye^{2x} \, dx + x^2 y^2 \, dy, \]

where \(C \) is the rectangle from \((-2, 0)\) to \((3, 0)\) to \((3, 2)\) to \((-2, 2)\) to \((-2, 0)\).

10. (10 points) The gravitational vector field is

\[\mathbf{F}(x, y, z) = \frac{-GmM}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{i}, \]

where \(G \) is the universal gravitational constant, and \(M \) and \(m \) are (constant) masses. Find the potential energy of the object of mass \(m \) at position \((a, b, c)\).