Further Results on Invertibility
MATH 322, Linear Algebra I

J. Robert Buchanan

Department of Mathematics

Spring 2015
Our discussion today will center on

▶ more results related to inverses of matrices,
▶ more results related to solving systems of linear equations.
Recall our graphical argument that a linear system of two equations in two unknowns has either no solution, a unique solution, or infinitely many solutions.
Basic Theorem

Recall our graphical argument that a linear system of two equations in two unknowns has either no solution, a unique solution, or infinitely many solutions.

Theorem

Every system of linear equations has either no solutions, exactly one solution, or infinitely many solutions.
One and only one of the following statements can be true of the number of solutions to the linear system $Ax = b$:

1. It has no solutions.
2. It has one solution.
3. It has more than one solution.

Our goal is to show that case 3 implies infinitely many solutions.
One and only one of the following statements can be true of the number of solutions to the linear system $Ax = b$:

1. It has no solutions.
2. It has one solution.
3. It has more than one solution.

Our goal is to show that case 3 implies infinitely many solutions.

If $Ax = b$ has two solutions, let them be x_1 and x_2.

$A(x_1 - x_2) = b - b = 0$.

Note that $x_0 = x_1 - x_2
eq 0$.

$A(x_0) = A(x_1 - x_2) = A(x_1) - A(x_2) = b - b = 0$.

Thus, there are infinitely many solutions.
One and only one of the following statements can be true of the number of solutions to the linear system $Ax = b$:

1. It has no solutions.
2. It has one solution.
3. It has more than one solution.

Our goal is to show that case 3 implies infinitely many solutions.

- If $Ax = b$ has two solutions, let them be x_1 and x_2.
- Define $x_0 = x_1 - x_2 \neq 0$.
Proof (1 of 2)

One and only one of the following statements can be true of the number of solutions to the linear system $Ax = b$:

1. It has no solutions.
2. It has one solution.
3. It has more than one solution.

Our goal is to show that case 3 implies infinitely many solutions.

► If $Ax = b$ has two solutions, let them be x_1 and x_2.
► Define $x_0 = x_1 - x_2 \neq 0$.
► Note that

$$Ax_0 = A(x_1 - x_2) = Ax_1 - Ax_2 = b - b = 0.$$
Let k be any scalar and consider

\[A(x_1 + kx_0) = Ax_1 + A(kx_0) = Ax_1 + k(Ax_0) = b + k(0) = b. \]

Thus $x_1 + kx_0$ is another solution to the linear system $Ax = b$. Since there are infinitely many choices for scalar k, there are infinitely many solutions.
Let k be any scalar and consider

$$A(x_1 + kx_0) = Ax_1 + A(kx_0) = Ax_1 + k(Ax_0) = b + k(0) = b.$$

Thus $x_1 + kx_0$ is another solution to the linear system $Ax = b$. Since there are infinitely many choices for scalar k, there are infinitely many solutions.
Linear Systems

Theorem

If A is an invertible \(n \times n \) matrix, then for each \(n \times 1 \) matrix \(b \), the system of equations \(Ax = b \) has the unique solution \(x = A^{-1}b \).
Linear Systems

Theorem
If A is an invertible $n \times n$ matrix, then for each $n \times 1$ matrix b, the system of equations $A x = b$ has the unique solution $x = A^{-1} b$.

Proof.

1. We can verify that $x = A^{-1} b$ is a solution, since

$$A(A^{-1} b) = (AA^{-1})b = b.$$

2. Let x_0 be any other solution to $A x = b$.

$$A x_0 = b$$

$$(A^{-1} A)x_0 = A^{-1} b$$

$$x_0 = A^{-1} b$$
Example

Using matrix inversion, find the solution to the system of equations below.

\[-x_1 + 4x_2 + x_3 = 0\]
\[x_1 + 9x_2 - 2x_3 = 1\]
\[6x_1 + 4x_2 - 8x_3 = 0\]
Example

Using matrix inversion, find the solution to the system of equations below.

\[-x_1 + 4x_2 + x_3 = 0\]
\[x_1 + 9x_2 - 2x_3 = 1\]
\[6x_1 + 4x_2 - 8x_3 = 0\]

If \(A = \begin{bmatrix} -1 & 4 & 1 \\ 1 & 9 & -2 \\ 6 & 4 & -8 \end{bmatrix} \) then \(A^{-1} = \begin{bmatrix} 32 & -18 & \frac{17}{2} \\ 2 & -1 & \frac{1}{2} \\ 25 & -14 & \frac{13}{2} \end{bmatrix} \)
Often we encounter related linear systems where only the right-hand side changes, \(i.e. \),

\[Ax = b_1, \quad Ax = b_2, \quad \cdots, \quad Ax = b_k \]
Common Coefficient Matrices

Often we encounter related linear systems where only the right-hand side changes, \(i.e. \),

\[
Ax = b_1, \quad Ax = b_2, \quad \cdots, \quad Ax = b_k
\]

There are two means of solving these systems (of systems of equations):

1. Find \(A^{-1} \) and then calculate \(x_i = A^{-1}b_i \) for \(i = 1, 2, \ldots, k \).
2. Form the augmented matrix \[
\begin{bmatrix}
A & | & b_1 & | & b_2 & | & \cdots & | & b_k
\end{bmatrix}
\]
and use Gauss-Jordan elimination.
Often we encounter related linear systems where only the right-hand side changes, *i.e.*,

\[Ax = b_1, \quad Ax = b_2, \quad \cdots, \quad Ax = b_k \]

There are two means of solving these systems (of systems of equations):

1. Find \(A^{-1} \) and then calculate \(x_i = A^{-1}b_i \) for \(i = 1, 2, \ldots, k \).
2. Form the augmented matrix \([A|b_1|b_2|\cdots|b_k]\) and use Gauss-Jordan elimination.
Consider $Ax = b_i$ where

$$A = \begin{bmatrix} -1 & 4 & 1 \\ 1 & 9 & -2 \\ 6 & 4 & -8 \end{bmatrix}, \quad b_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad b_2 = \begin{bmatrix} -3 \\ 4 \\ -5 \end{bmatrix}.$$

Use Gauss-Jordan elimination to solve both systems of equations.
Augmented form:

\[
\begin{bmatrix}
-1 & 4 & 1 & | & 0 & -3 \\
1 & 9 & -2 & | & 1 & 4 \\
6 & 4 & -8 & | & 1 & -5 \\
\end{bmatrix}
\]

Multiply the first row by \(-1\). Subtract the new first row from the second row. Multiply the new first row by \(-6\) and add to the third row.

\[
\begin{bmatrix}
1 & -4 & -1 & | & 0 & 3 \\
0 & 13 & -1 & | & 1 & 1 \\
0 & 28 & -2 & | & 1 & -23 \\
\end{bmatrix}
\]
Solution (2 of 3)

$$\begin{bmatrix} 1 & -4 & -1 & 0 & 3 \\ 0 & 13 & -1 & 1 & 1 \\ 0 & 28 & -2 & 1 & -23 \end{bmatrix}$$

Multiply the second row by $1/13$. Multiply the new second row by 4 and add to the first row. Multiply the new second row by -28 and add to the third row.

$$\begin{bmatrix} 1 & 0 & -17/13 & 4/13 & 43/13 \\ 0 & 1 & -1/13 & 1/13 & 1/13 \\ 0 & 0 & 2/13 & -15/13 & -327/13 \end{bmatrix}$$
Multiply the third row by $13/2$. Multiply the new third row by $17/13$ and add to the first row. Multiply the new third row by $1/13$ and add to the second row.

$$
\begin{bmatrix}
1 & 0 & 0 & -19/2 & -421/2 \\
0 & 1 & 0 & -1/2 & -25/2 \\
0 & 0 & 1 & -15/2 & -327/2
\end{bmatrix}
$$

First solution $x_1 = \begin{bmatrix} -19/2 \\ -1/2 \\ -15/2 \end{bmatrix}$ and second solution $x_2 = \begin{bmatrix} -421/2 \\ -25/2 \\ -327/2 \end{bmatrix}$
Properties of Invertible Matrices

Remark: we defined the inverse of matrix A to be matrix B such that $AB = I$ and $BA = I$. Actually only one condition is needed.
Remark: we defined the inverse of matrix A to be matrix B such that $AB = I$ and $BA = I$. Actually only one condition is needed.

Theorem

Let A be an $n \times n$ matrix.

1. If B is an $n \times n$ matrix such that $BA = I$, then $B = A^{-1}$.
2. If B is an $n \times n$ matrix such that $AB = I$, then $B = A^{-1}$.
Proof

- Suppose that B is a square matrix and $BA = I$.
Proof

▶ Suppose that B is a square matrix and $BA = I$.
▶ Let x_0 be any solution to $Ax = 0$.

\[
\begin{align*}
Ax_0 &= 0 \\
B(Ax_0) &= B(0) \\
(BA)x_0 &= 0 \\
x_0 &= 0
\end{align*}
\]

Thus $Ax = 0$ has only the trivial solution which implies A is invertible.
Proof

- Suppose that B is a square matrix and $BA = I$.
- Let x_0 be any solution to $Ax = 0$.

$$
\begin{align*}
Ax_0 &= 0 \\
B(Ax_0) &= B(0) \\
(BA)x_0 &= 0 \\
x_0 &= 0
\end{align*}
$$

Thus $Ax = 0$ has only the trivial solution which implies A is invertible.

- Let the inverse of A be A^{-1}.

$$
\begin{align*}
BAA^{-1} &= (BA)A^{-1} = IA^{-1} = A^{-1} \\
BAA^{-1} &= B(AA^{-1}) = BI = B
\end{align*}
$$
More Equivalence Statements

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

1. A is invertible.
2. $Ax = 0$ has only the trivial solution.
3. The reduced row echelon form of A is I_n.
4. A is expressible as the product of elementary matrices.
5. $Ax = b$ is consistent for every $n \times 1$ matrix b.
6. $Ax = b$ has exactly one solution for every $n \times 1$ matrix b.
More Equivalence Statements

Theorem

If A is an $n \times n$ matrix, then the following statements are equivalent:

1. A is invertible.
2. $Ax = 0$ has only the trivial solution.
3. The reduced row echelon form of A is I_n.
4. A is expressible as the product of elementary matrices.
5. $Ax = b$ is consistent for every $n \times 1$ matrix b.
6. $Ax = b$ has exactly one solution for every $n \times 1$ matrix b.

Previously we showed $1 \implies 2 \implies 3 \implies 4 \implies 1$.

An earlier theorem showed $1 \implies 6$.
Proof ($6 \implies 5$)

- Assume $Ax = b$ has exactly one solution for every $n \times 1$ matrix b.
Proof ($6 \implies 5$)

- Assume $Ax = b$ has exactly one solution for every $n \times 1$ matrix b.
- By definition, then $Ax = b$ is consistent for every $n \times 1$ matrix b.
Assume $Ax = b$ is consistent for every $n \times 1$ matrix b. The following systems are then consistent:

\[
Ax = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad Ax = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \ldots, \quad Ax = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.
\]
Proof $ (5 \implies 1)$ (1 of 2)

- Assume $Ax = b$ is consistent for every $n \times 1$ matrix b.
- The following systems are then consistent.

\[
Ax = \begin{bmatrix}
1 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}, \quad Ax = \begin{bmatrix}
0 \\
1 \\
0 \\
\vdots \\
0
\end{bmatrix}, \ldots, \quad Ax = \begin{bmatrix}
0 \\
0 \\
0 \\
\vdots \\
1
\end{bmatrix}.
\]

- Let x_1, x_2, \ldots, x_n be the respective solutions.
Proof $(5 \implies 1)$ (2 of 2)

Define the matrix C as

$$C = [x_1 \mid x_2 \mid \cdots \mid x_n].$$
Proof (5 \implies 1) (2 of 2)

Define the matrix C as

$$C = [x_1 | x_2 | \cdots | x_n].$$

Calculate AC:

$$AC = \begin{bmatrix} Ax_1 & Ax_2 & \cdots & Ax_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} = I$$

Thus $C = A^{-1}$ and A is invertible.
Proof (5 \implies 1) (2 of 2)

- Define the matrix C as
 \[C = [\mathbf{x}_1 \mid \mathbf{x}_2 \mid \cdots \mid \mathbf{x}_n]. \]

- Calculate AC:
 \[
 AC = [A\mathbf{x}_1 \mid A\mathbf{x}_2 \mid \cdots \mid A\mathbf{x}_n] = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
 \end{bmatrix} = I
 \]

- Thus $C = A^{-1}$ and A is invertible.
Recall: we have seen that if $n \times n$ matrices A and B are invertible then AB is invertible.
Recall: we have seen that if $n \times n$ matrices A and B are invertible then AB is invertible.

The converse is also true.

Theorem

Let A and B be $n \times n$ matrices. If AB is invertible, then A and B are invertible.
Proof

Let x_0 be any solution of the linear system $Bx = 0$. Then

$$(AB)x_0 = A(Bx_0) = A(0) = 0.$$
Proof

- Let x_0 be any solution of the linear system $Bx = 0$. Then

 \[(AB)x_0 = A(Bx_0) = A(0) = 0.\]

- Since AB is invertible then $x_0 = 0$.
Proof

- Let \(x_0 \) be any solution of the linear system \(Bx = 0 \). Then
 \[
 (AB)x_0 = A(Bx_0) = A(0) = 0.
 \]

- Since \(AB \) is invertible then \(x_0 = 0 \).

- Since \(x_0 = 0 \) is the only solution to \(Bx = 0 \), then \(B \) is invertible. Consequently \(B^{-1} \) is invertible.
Proof

- Let x_0 be any solution of the linear system $Bx = 0$. Then
 \[(AB)x_0 = A(Bx_0) = A(0) = 0.\]

- Since AB is invertible then $x_0 = 0$.

- Since $x_0 = 0$ is the only solution to $Bx = 0$, then B is invertible. Consequently B^{-1} is invertible.

- A is invertible since
 \[A = AI = A(BB^{-1}) = (AB)B^{-1}\]
 it is the product of invertible matrices.
Fundamental Problem

Problem: let A be a fixed $m \times n$ matrix. Find all the $m \times 1$ matrices b such that the system of equations $Ax = b$ is consistent.
Example

Determine, by row-reducing the augmented matrix, the conditions which b_1, b_2, and b_3 must satisfy for the following system to be consistent.

\begin{align*}
x_1 + x_2 + 2x_3 &= b_1 \\
x_1 + x_3 &= b_2 \\
2x_1 + x_2 + 3x_3 &= b_3
\end{align*}
Solution

Augmented matrix:

\[
\begin{bmatrix}
1 & 1 & 2 & b_1 \\
1 & 0 & 1 & b_2 \\
2 & 1 & 3 & b_3 \\
\end{bmatrix}
\]

System is consistent only if \(b_3 = b_1 + b_2 \).
Solution

Augmented matrix:

\[
\begin{bmatrix}
1 & 1 & 2 & b_1 \\
1 & 0 & 1 & b_2 \\
2 & 1 & 3 & b_3 \\
\end{bmatrix}
\]

Row reduced form:

\[
\begin{bmatrix}
1 & 1 & 2 & b_1 \\
0 & 1 & 1 & b_1 - b_2 \\
0 & 0 & 0 & b_3 - b_2 - b_1 \\
\end{bmatrix}
\]

System is consistent only if \(b_3 = b_1 + b_2 \).
Solution

Augmented matrix:

\[
\begin{bmatrix}
1 & 1 & 2 & b_1 \\
1 & 0 & 1 & b_2 \\
2 & 1 & 3 & b_3 \\
\end{bmatrix}
\]

Row reduced form:

\[
\begin{bmatrix}
1 & 1 & 2 & b_1 \\
0 & 1 & 1 & b_1 - b_2 \\
0 & 0 & 0 & b_3 - b_2 - b_1 \\
\end{bmatrix}
\]

System is consistent only if \(b_3 = b_1 + b_2 \).
Homework

- Read Section 1.6
- Work exercises 1–5, 9, 16, 21–24.