Matrix Transformations
MATH 322, Linear Algebra I

J. Robert Buchanan

Department of Mathematics

Spring 2015
Introduction

Today we will discuss the behavior and properties of functions whose domain is a subset of the vectors in \(\mathbb{R}^n \) and whose range is a subset of the vectors in \(\mathbb{R}^m \).

Remarks:

- Linear transformations are of fundamental importance in science, engineering, and mathematics.
- Most of our examples will be anchored in two- and three-dimensional spaces.
Functions

Definition
A function f is a rule of correspondence that associates to each element $a \in A$ (the domain set) a unique element $b \in B$ (the codomain).

\[
\text{range} = \{f(a) | a \in A\}
\]
Functions

Definition
A function f is a rule of correspondence that associates to each element $a \in A$ (the domain set) a unique element $b \in B$ (the codomain).

\[
\text{range} = \{ f(a) | a \in A \}
\]

Remarks:
- Two functions f_1 and f_2 are **equal** if they have the same domain and if $f_1(a) = f_2(a), \forall a \in A$.
- When the domain is \mathbb{R}^n and the codomain is \mathbb{R}^m we call f a **map** or **transformation** from \mathbb{R}^n to \mathbb{R}^m. $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called an **operator**.
Maps

Generically a map \(f : \mathbb{R}^n \to \mathbb{R}^m \) can be expressed as

\[
\begin{align*}
\mathbf{w}_1 & = f_1(x_1, x_2, \ldots, x_n) \\
\mathbf{w}_2 & = f_2(x_1, x_2, \ldots, x_n) \\
\vdots & \\
\mathbf{w}_m & = f_m(x_1, x_2, \ldots, x_n)
\end{align*}
\]
Generically a map $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ can be expressed as

\[
\begin{align*}
 w_1 &= f_1(x_1, x_2, \ldots, x_n) \\
 w_2 &= f_2(x_1, x_2, \ldots, x_n) \\
 &\vdots \\
 w_m &= f_m(x_1, x_2, \ldots, x_n)
\end{align*}
\]

If f_1, f_2, \ldots, f_m are linear functions of x_1, x_2, \ldots, x_n then the transformation is called \textbf{linear}.
Matrix Multiplication

If we name the transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) then \(A \) is said to be the **standard matrix** for the linear transformation.

\(T \) is multiplication by \(A \).
Examples (1 of 2)

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is such that $T(x) = 0$ for all $x \in \mathbb{R}^n$ then

$$T(x) = T_0(x) = 0x = 0$$

is called the **zero transformation**.
If $T : \mathbb{R}^n \to \mathbb{R}^n$ is such that $T(x) = x$ for all $x \in \mathbb{R}^n$ then

$$T(x) = T_I(x) = I_n x = x$$

is called the identity transformation.
Two-Dimensional Reflection Operators (1 of 3)

Suppose $T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, then

$T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} -x \\ y \end{bmatrix}$ (reflection about y-axis).
Two-Dimensional Reflection Operators (2 of 3)

Suppose \(T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \), then

\[T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x \\ -y \end{bmatrix} \] (reflection about \(x \)-axis).
Suppose $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, then

$T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ x \end{bmatrix}$ (reflection about $y = x$).
Reflection about xy-plane,

\[T \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}. \]
Three-Dimensional Reflection Operators (2 of 3)

Reflection about xz-plane,

\[
T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.
\]
Three-Dimensional Reflection Operators (3 of 3)

Reflection about yz-plane,

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$
Definition
A projection operator (sometimes called an orthogonal projection operator) maps a vector to its orthogonal projection on a line or plane through the origin.
Definition

A **projection operator** (sometimes called an **orthogonal projection operator**) maps a vector to its orthogonal projection on a line or plane through the origin.

- Projection onto the x-axis, $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

- Projection onto the y-axis, $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.
Pictures

Project onto x-axis

\[T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]

Project onto x-axis

\[T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]
Three-dimensional Projections

- **Projection onto xy-plane,**
 \[
 T \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 x \\
 y \\
 0
 \end{pmatrix}.
 \]

- **Projection onto xz-plane,**
 \[
 T \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 1 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 x \\
 0 \\
 z
 \end{pmatrix}.
 \]

- **Projection onto yz-plane,**
 \[
 T \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 0 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{pmatrix} \begin{pmatrix}
 x \\
 y \\
 z
 \end{pmatrix} = \begin{pmatrix}
 0 \\
 y \\
 z
 \end{pmatrix}.
 \]
Pictures

Projection on xy-plane

Projection on xz-plane

Projection on yz-plane
Rotation Operators

Definition
A operator that rotates a vector through a fixed angle θ is called a rotation operator.
Rotation Operators

Definition
A operator that rotates a vector through a fixed angle θ is called a rotation operator.

Theorem
The standard matrix for the rotation operator on \mathbb{R}^2 which rotates a vector counterclockwise through an angle θ is

$$
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
$$
\[w_1 = x \cos \theta - y \sin \theta \]
\[w_2 = x \sin \theta + y \cos \theta \]
Example

Suppose the vector \(\mathbf{x} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right) \) is rotated \(\theta = 45^\circ \) counterclockwise around the origin.

\[
\begin{bmatrix}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
\frac{\sqrt{3}}{2} \\
\frac{1}{2}
\end{bmatrix}
= \frac{\sqrt{2}}{2}
\begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{\sqrt{3}}{2} \\
\frac{1}{2}
\end{bmatrix}
= \begin{bmatrix}
\frac{\sqrt{3} - 1}{2\sqrt{2}} \\
\frac{\sqrt{2} + \sqrt{6}}{4}
\end{bmatrix}
\]
Rotations in \mathbb{R}^3

To rotate a vector in \mathbb{R}^3 we will make note of

- a line through the origin called the **axis of rotation**,
- a unit vector \mathbf{u} along the axis of rotation,
- the **right-hand rule** to determine if the rotation is **positive** or **negative**.

Curl the fingers of your right hand around the axis of rotation in the direction of the rotation. If your thumb points in the same direction as \mathbf{u}, the rotation is **positive**, otherwise it is **negative**.
Rotations in \mathbb{R}^3

To rotate a vector in \mathbb{R}^3 we will make note of

- a line through the origin called the **axis of rotation**,
- a unit vector u along the axis of rotation,
- the **right-hand rule** to determine if the rotation is **positive** or **negative**.

- Curl the fingers of your right hand around the axis of rotation in the direction of the rotation. If your thumb points in the same direction as u, the rotation is positive, otherwise it is negative.
Right-hand Rule
Rotations Around Positive x-axis

Counterclockwise rotation about the positive x-axis through angle θ:

Illustration

Standard Matrix

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{bmatrix}$$
Rotations Around Positive y-axis

Counterclockwise rotation about the positive y-axis through angle θ:

Illustration

Standard Matrix

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\]
Rotations Around Positive z-axis

Counterclockwise rotation about the positive z-axis through angle θ:

Standard Matrix

\[
\begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
Dilation and Contraction Operators

Dilation and contraction operators stretch or compress vectors without rotation, reflection, or translation.

\[T(x) = kx \]

where the action is
- contraction, if \(0 \leq k < 1 \)
- dilation, if \(1 < k \)
Compositions of Linear Transformations

Suppose $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^k$ and $T_B : \mathbb{R}^k \rightarrow \mathbb{R}^m$ then

$$(T_B \circ T_A) : \mathbb{R}^n \rightarrow \mathbb{R}^m$$

where

$$(T_B \circ T_A)(x) = T_B(T_A(x)) = T_B(Ax) = B(Ax) = (BA)x.$$
Compositions of Linear Transformations

Suppose $T_A : \mathbb{R}^n \to \mathbb{R}^k$ and $T_B : \mathbb{R}^k \to \mathbb{R}^m$ then $(T_B \circ T_A) : \mathbb{R}^n \to \mathbb{R}^m$ where

$$(T_B \circ T_A)(x) = T_B(T_A(x)) = T_B(Ax) = B(Ax) = (BA)x.$$

Remarks:

- Composition of linear transformations is equivalent to multiplying the standard matrices representing the transformations.

$T_B \circ T_A = T_{BA}$

- Since matrix multiplication is not commutative, then composition of linear transformations is not commutative.
Rotate the vector \(\mathbf{x} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2} \right) \) by \(\theta = \frac{3\pi}{4} \) counterclockwise around the origin and project it onto the \(x \)-axis.
Example (2 of 2)

Find the standard matrix for the transformation which reflects a vector about the line through the origin making an angle of $\pi/6$ with the positive x-axis.
Example (2 of 2)

Find the standard matrix for the transformation which reflects a vector about the line through the origin making an angle of $\pi/6$ with the positive x-axis.

We can decompose this transformation into three operations.

1. Rotate counterclockwise by $\pi/3$.
2. Reflect about the y-axis.
3. Rotate clockwise by $\pi/3$.
Solution

\[
T = \begin{bmatrix}
\cos \frac{-\pi}{3} & -\sin \frac{-\pi}{3} \\
\sin \frac{-\pi}{3} & \cos \frac{-\pi}{3}
\end{bmatrix}
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\cos \frac{\pi}{3} & -\sin \frac{\pi}{3} \\
\sin \frac{\pi}{3} & \cos \frac{\pi}{3}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & \frac{1}{2}
\end{bmatrix}
\]
Homework

- Read Section 4.9
- Exercises: 1–19 odd