Matrices and Matrix Operations
MATH 322, Linear Algebra I

J. Robert Buchanan

Department of Mathematics

Spring 2015
Definition
A matrix is any rectangular array of numbers.

- An $n \times m$ matrix contains n rows and m columns.
- A $1 \times m$ matrix is called a row vector.
- A $n \times 1$ matrix is called a column vector.
- A 1×1 matrix is called a scalar.

Notation: $A = (a_{ij})_{n \times m}$
$a_{ij} = (A)_{ij}$ is the entry in the i^{th} row and j^{th} column of matrix A.
Square Matrices

Definition

A square matrix of order n is a matrix with n rows and n columns.

Definition

The main diagonal of a square matrix of order n is the entries \(\{a_{11}, a_{22}, \ldots, a_{nn}\} \).

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\]
Matrix Operations

Definition
Two matrices \(A \) and \(B \) are **equal**, denoted \(A = B \) if they have the same size and \(a_{ij} = b_{ij} \) for all \(i \) and \(j \).

Definition
If matrices \(A \) and \(B \) have the same size then the **sum of \(A \) and \(B \)** denoted \(A + B \) is a matrix obtained by adding corresponding entries in matrices \(A \) and \(B \).

\[
(A + B)_{ij} = (A)_{ij} + (B)_{ij} = a_{ij} + b_{ij}
\]
Matrix Operations (continued)

Definition
If matrices A and B have the same size then the **difference of A and B** denoted $A - B$ is a matrix obtained by subtracting corresponding entries in matrix B from those in matrix A.

$$(A - B)_{ij} = (A)_{ij} - (B)_{ij} = a_{ij} - b_{ij}$$

Example
Given

$$A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{bmatrix}$$

find $A + B$ and $A - B$.
Scalar Product

Definition
If A is a matrix and c is a scalar, the **scalar product of c and A** denoted cA is a matrix obtained by multiplying each entry of A by c.

$$(cA)_{ij} = c(A)_{ij} = ca_{ij}$$

Definition
If A_1, A_2, \ldots, A_n are all matrices of the same size and if c_1, c_2, \ldots, c_n are scalars then an expression of the form

$$c_1 A_1 + c_2 A_2 + \cdots + c_n A_n$$

is called a **linear combination** of A_1, A_2, \ldots, A_n with **coefficients** c_1, c_2, \ldots, c_n.

$$(c_1 A_1 + c_2 A_2 + \cdots + c_n A_n)_{ij} = c_1 (A_1)_{ij} + c_2 (A_2)_{ij} + \cdots + c_n (A_n)_{ij}$$
Examples

Example

Given

\[A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{bmatrix} \]

find \(3A \) and \(2A - 3B \).
Matrix Multiplication

Definition
If A is an $m \times p$ matrix and B is a $p \times n$ matrix, the product of A and B is an $m \times n$ matrix where

$$(AB)_{ij} = \sum_{k=1}^{p} (A)_{ik}(B)_{kj} = \sum_{k=1}^{p} a_{ik}b_{kj}$$

for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$.

Example
Given

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 3 \\ 2 & -1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 & 5 \\ 2 & 4 & 1 \end{bmatrix}$$

find AB.
Examples

Example
Suppose that matrix A has size 3×4, matrix B has size 7×3, and matrix C has size 4×7. Which pairs of matrix products are defined and what are the sizes of the products?
Multiplication by Rows and Columns

\[AB = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1r} \\
 a_{21} & a_{22} & \cdots & a_{2r} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{i1} & a_{i2} & \cdots & a_{ir} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mr}
\end{bmatrix} \begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1n} \\
 b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 b_{r1} & b_{r2} & \cdots & b_{rj} & \cdots & b_{rn}
\end{bmatrix} \]

Note:

\[(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ir}b_{rj}\]

Observations:

- \(j^{th}\) column of \(AB = A[j^{th}\text{column of } B]\)
- \(i^{th}\) row of \(AB = [i^{th}\text{row of } A]B\)
Example

Given

\[A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \] and \[B = \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} \]

find the second row of \(AB \) and the third column of \(AB \).
A matrix can be **partitioned** by dividing it into submatrices. Of particular importance are the partitions into rows and columns. Suppose

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{n1} & a_{n2} & a_{33} & a_{34}
\end{bmatrix}
\]

then

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{n1} & a_{n2} & a_{33} & a_{34}
\end{bmatrix} = \begin{bmatrix}
 r_1 \\
 r_2 \\
 r_3
\end{bmatrix}
\]

and

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{n1} & a_{n2} & a_{33} & a_{34}
\end{bmatrix} = \begin{bmatrix}
 c_1 & c_2 & c_3 & c_4
\end{bmatrix}
\]
Matrix Products by Partitioning

Let a_1, a_2, \ldots, a_m be the row matrices of matrix A and let b_1, b_2, \ldots, b_n be the column matrices of matrix B then we may compute the product AB in the following ways:

- Column by column

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_n \end{bmatrix}$$

- Row by row

$$AB = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} B = \begin{bmatrix} a_1 B \\ a_2 B \\ \vdots \\ a_m B \end{bmatrix}$$
Linear Combinations

Suppose A is an $m \times n$ matrix and x is a $n \times 1$ column vector, then

$$Ax = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$
Remarks

- The product Ax where A is an $m \times n$ matrix and x is an $n \times 1$ column vector is a linear combination of the columns of A with the entries of x serving as coefficients.

- The product yA where A is an $m \times n$ matrix and y is an $1 \times m$ row vector is a linear combination of the rows of A with the entries of y serving as coefficients.
Consider the linear system of m equations with n unknowns.

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 &\vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{align*}
\]

Think of each side of the equation as a column matrix.

\[
\begin{bmatrix}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
 &\vdots \\\n a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\end{bmatrix}
\]
Linear Systems (continued)

Think of the column matrix as a product.

\[
\begin{bmatrix}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \cdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m \\
\end{bmatrix}
\]

\[Ax = b\]
Transposes

Definition
If A is an $m \times n$ matrix, the transpose of A denoted A^T is an $n \times m$ matrix such that

$$(A^T)_{ij} = (A)_{ji}$$

for all i and j.

Example
Given

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 3 \\ 2 & -1 \end{bmatrix}$$

find A^T.
Definition
If A is a square matrix then the trace of A denoted $\text{tr}(A)$ is the sum of the entries on the diagonal of A.

Example
Given

\[
A = \begin{bmatrix}
5 & 5 & 16 \\
6 & 12 & 3 \\
4 & -2 & 9
\end{bmatrix}
\]

find $\text{tr}(A)$.
Homework

- Read Section 1.3
- Work exercises 1, 3, 7, 9, 12, 13, 18, 21, 23, 24, 25–31 odd.