Rules for Matrix Arithmetic
MATH 322, Linear Algebra I

J. Robert Buchanan
Department of Mathematics

Spring 2015
Introduction

- Laws of matrix arithmetic
- Many laws from ordinary (scalar) arithmetic carry over
- Several common ones do not.
- We will assume the sizes of matrices are such that the operations described can be carried out.
Properties of Matrix Arithmetic

Theorem

Let A, B, and C be matrices, then

- $A + B = B + A$ (Commutative Law of Addition)
- $A + (B + C) = (A + B) + C$ (Associative Law of Addition)
- $A(BC) = (AB)C$ (Associative Law of Multiplication)
- $A(B + C) = AB + AC$ (Left Distributive Law)
- $(B + C)A = BA + CA$ (Right Distributive Law)
Properties of Matrix Arithmetic

Theorem

Let A, B, and C be matrices and a and b be scalars, then

- $A(B - C) = AB - AC$
- $(B - C)A = BA - CA$
- $a(B + C) = aB + aC$
- $a(B - C) = aB - aC$
- $(a + b)C = aC + bC$
- $(a - b)C = aC - bC$
- $a(bC) = (ab)C$
- $a(BC) = (aB)C = B(aC)$
Question: Which common property is missing from the theorem?
Missing Properties

Question: Which common property is missing from the theorem?

Answer: Commutativity of matrix multiplication.
Question: Which common property is missing from the theorem?
Answer: Commutativity of matrix multiplication.

Example
Let
\[
A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & 1 \\ 2 & 0 \end{bmatrix},
\]
then
\[
AB = \begin{bmatrix} 4 & 2 \\ 4 & 1 \end{bmatrix} \quad \text{but} \quad BA = \begin{bmatrix} 5 & 1 \\ 4 & 0 \end{bmatrix}.
\]
Zero Matrices

Definition
A matrix all of whose entries are 0 is called a zero matrix.

Notation: the zero matrix will be denoted 0.

Theorem
Let A be an arbitrary matrix and let 0 be a zero matrix, then

- $A + 0 = 0 + A = A$ (Additive Identity)
- $A - A = 0$ (Additive Inverse)
- $0 - A = -A$
- $A0 = 0A = 0$
For **scalar arithmetic** we are accustomed to the **cancellation law**:

\[
\text{If } ab = ac \text{ and } a \neq 0 \text{ then } b = c.
\]

This does not hold true for matrices.

Example

\[
\begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 1 \\
0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
0 & 2 \\
0 & 0 \\
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
\end{bmatrix}
\]
For **scalar arithmetic** we are accustomed to the **zero factor property**:

\[\text{If } ab = 0 \text{ then } a = 0 \text{ or } b = 0. \]

This does not hold true for matrices.

Example

\[
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix}
\]
Identity Matrices

Definition
A square matrix with 1’s on the diagonal and 0’s elsewhere is called an **identity matrix**.

Notation: the $n \times n$ identity matrix will be denoted I_n or merely I (when the size is understood from the context).

Theorem
If A is an $m \times n$ matrix then $AI_n = A$ and $I_mA = A$.

Remark: Identity matrices play the role of the multiplicative identity element for matrix multiplication.
Theorem

If A is an $n \times n$ matrix and R is its reduced row-echelon form, then R either contains a row of 0’s or is I_n.
Theorem
If A is an $n \times n$ matrix and R is its reduced row-echelon form, then R either contains a row of 0’s or is I_n.

Proof.
Let the reduced row-echelon form of A be

\[
R = \begin{bmatrix}
 r_{11} & r_{12} & \cdots & r_{1n} \\
 r_{21} & r_{22} & \cdots & r_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 r_{n1} & r_{n2} & \cdots & r_{nn}
\end{bmatrix}
\]
1. Either the last row contains only 0’s or it does not.
Proof (continued)

1. Either the last row contains only 0’s or it does not.
2. If the matrix has no row of 0’s, each row has a leading entry of 1.
Proof (continued)

1. Either the last row contains only 0’s or it does not.
2. If the matrix has no row of 0’s, each row has a leading entry of 1.
3. The leading 1’s occur along the main diagonal and the entries in the same column as a 1 must be 0.
1. Either the last row contains only 0’s or it does not.
2. If the matrix has no row of 0’s, each row has a leading entry of 1.
3. The leading 1’s occur along the main diagonal and the entries in the same column as a 1 must be 0.
4. Thus if matrix R has no row of 0’s then $R = I_n$.
Matrix Inverses

Definition
If A and B are $n \times n$ matrices such that $AB = BA = I_n$ then A is invertible and B is the inverse of A. If A has no inverse then A is said to be singular.

Notation: the inverse of an invertible matrix A will be denoted A^{-1}.

Example

Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$, then

$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$
Example

Let \(A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \), then

\[
BA = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} b_{11} + b_{12} & 0 \\ b_{21} + b_{22} & 0 \end{bmatrix} \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]
Uniqueness of an Inverse

Theorem

If B and C are both inverses of A then \(B = C \).
Uniqueness of an Inverse

Theorem
If B and C are both inverses of A then $B = C$.

Proof.

\[
BA = I \\
(BA)C = IC = C \\
B(AC) = BI = B \quad \text{(associativity)} \\
B = C
\]
Uniqueness of an Inverse

Theorem
If B and C are both inverses of A then $B = C$.

Proof.

\[
BA = I \\
(BA)C = IC = C \\
B(AC) = BI = B \quad \text{(associativity)} \\
B = C
\]

Remark: the inverse of a matrix (if it exists) is unique.
Theorem
If A is the 2×2 matrix with

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then A is invertible if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$
Properties of Inverses

Theorem
If A and B are $n \times n$ invertible matrices then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$
Properties of Inverses

Theorem
If A and B are $n \times n$ invertible matrices then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1} = I$$
Properties of Inverses

Theorem

If A and B are $n \times n$ invertible matrices then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

Remark: the product of any number of invertible matrices is invertible and the inverse of the product is the product of the inverses in reverse order.
Properties of Inverses

Theorem

If A and B are $n \times n$ invertible matrices then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Proof.

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AA^{-1}A^{-1} = I$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$$

Remark: the product of any number of invertible matrices is invertible and the inverse of the product is the product of the inverses in reverse order.
Powers of a Matrix

Definition
If A is an $n \times n$ matrix then we define the nonnegative powers of A as follows.

$$A^0 = I_n \quad \text{and} \quad A^n = AA \cdots A \quad \text{for } n > 0.$$ n factors

If A is an invertible matrix then the negatives powers of A are defined as

$$A^{-n} = (A^{-1})^n = A^{-1}A^{-1} \cdots A^{-1}.$$ n factors
Laws of Exponents

Theorem
If A is a square matrix and r and s are nonnegative integers then $A^r A^s = A^{r+s}$.

Theorem
If A is an invertible matrix, then:

- A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- A^n is invertible and $(A^n)^{-1} = (A^{-1})^n$ for $n = 0, 1, \ldots$.
- If $k \neq 0$ then kA is invertible and $(kA)^{-1} = \frac{1}{k} A^{-1}$.
Matrix Polynomials

Recall that a polynomial is a function of the form

\[p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n. \]

If \(A \) is an \(m \times m \) matrix then \(p(A) \) is an \(m \times m \) matrix where

\[p(A) = a_0 I_m + a_1 A + a_2 A^2 + \cdots + a_n A^n. \]
Example

Let \(p(x) = 3x^2 - 2x + 1 \) and \(A = \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix} \). Then

\[
p(A) = 3A^2 - 2A + I_2
\]

\[
= 3 \begin{bmatrix} 7 & -10 \\ -15 & 22 \end{bmatrix} - 2 \begin{bmatrix} -1 & 2 \\ 3 & -4 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} 21 & -30 \\ -45 & 66 \end{bmatrix} - \begin{bmatrix} -2 & 4 \\ 6 & -8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
= \begin{bmatrix} 24 & -34 \\ -51 & 75 \end{bmatrix}
\]
Properties of the Transpose

Theorem

Let A and B be matrices and k be a scalar, then

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$ and $(A - B)^T = A^T - B^T$
- $(kA)^T = kA^T$
- $(AB)^T = B^T A^T$.

Remark: the transpose of the product of any number of matrices is the product of the transposes in reverse order.
Properties of the Transpose

Theorem

Let A and B be matrices and k be a scalar, then

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$ and $(A - B)^T = A^T - B^T$
- $(kA)^T = kA^T$
- $(AB)^T = B^T A^T$.

Remark: the transpose of the product of any number of matrices is the product of the transposes in reverse order.
Invertibility of the Transpose

Theorem

*If A is an invertible matrix, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.***
Invertibility of the Transpose

Theorem

*If A is an invertible matrix, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.***

Proof.

\[
A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I
\]
Invertibility of the Transpose

Theorem

*If A is an invertible matrix, then A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.***

Proof.

\[
A^T(A^{-1})^T = (A^{-1}A)^T = I^T = I
\]

\[
(A^{-1})^T A^T = (AA^{-1})^T = I^T = I
\]
Homework

- Read Section 1.4
- Exercises 1, 2, 4, 5, 6, 8, 11, 13, 14, 16, 17, 21, 22, 29, 32, 39, 46, 49