The Convolution Integral
MATH 365 Ordinary Differential Equations

J. Robert Buchanan
Department of Mathematics

Spring 2015
Observation: in general $\mathcal{L} \{f(t) g(t)\} \neq \mathcal{L} \{f(t)\} \mathcal{L} \{g(t)\}$;
Observation: in general $\mathcal{L} \{f(t) g(t)\} \neq \mathcal{L} \{f(t)\} \mathcal{L} \{g(t)\}$; however,

if the notion of “product” is modified perhaps the Laplace transform will commute with multiplication.
Generalized Product

Theorem
If \(F(s) = \mathcal{L} \{ f(t) \} \) and \(G(s) = \mathcal{L} \{ g(t) \} \) both exist for \(s > a \geq 0 \), and if we define

\[
h(t) = \int_0^t f(t - \tau) g(\tau) \, d\tau = \int_0^t f(\tau) g(t - \tau) \, d\tau,
\]

then

\[
H(s) = F(s) G(s) = \mathcal{L} \{ h(t) \},
\]

for \(s > a \). The function \(h \) is called the convolution of \(f \) and \(g \). The integrals are known as convolution integrals. The convolution of \(f \) and \(g \) will be denoted \((f \ast g)(t)\).
Well-defined-ness of \((f \ast g)(t)\)

Let \(z = t - \tau\) and \(-dz = d\tau\) then

\[
\int_0^t f(t - \tau) g(\tau) \, d\tau = -\int_t^0 f(z) g(t - z) \, dz
\]

\[
= \int_0^t f(z) g(t - z) \, dz.
\]

Thus the convolution integral is well-defined.
Example

Let $f(t) = \sin t$ and $g(t) = \cos t$ and find

$$(f \ast g)(t)$$
Example

Let \(f(t) = \sin t \) and \(g(t) = \cos t \) and find

\[
(f \ast g)(t) = \int_0^t \sin(t - \tau) \cos \tau \, d\tau
\]

\[
= \int_0^t ((\sin t \cos \tau - \cos t \sin \tau) \cos \tau) \, d\tau
\]

\[
= \int_0^t (\sin t \cos^2 \tau - \cos t \sin \tau \cos \tau) \, d\tau
\]

\[
= \frac{1}{2} \sin t \int_0^t (1 + \cos 2\tau) \, d\tau - \frac{1}{2} \cos t \int_0^t \sin 2\tau \, d\tau
\]

\[
= \frac{t}{2} \sin t + \frac{1}{4} \sin t \sin 2t + \frac{1}{4} \cos t \cos 2t - \frac{1}{4} \cos t
\]

\[
= \frac{t}{2} \sin t
\]
Properties of the Convolution Integral

- \(f \ast g = g \ast f \) (commutativity)
- \(f \ast (g_1 + g_2) = f \ast g_1 + f \ast g_2 \) (distributivity)
- \((f \ast g) \ast h = f \ast (g \ast h) \) (associativity)
- \(f \ast 0 = 0 \ast f = 0 \)

Remark: the convolution possesses many properties similar to multiplication.
Example

Let $f(t)$ be a continuous function and let $g(t) = \delta(t)$ and find

$$(f \ast \delta)(t)$$
Example

Let $f(t)$ be a continuous function and let $g(t) = \delta(t)$ and find

$$(f \ast \delta)(t) = \int_0^t \delta(t - \tau)f(\tau) \, d\tau$$

$$= \int_{-\infty}^\infty \delta(t - \tau)f(\tau) \, d\tau$$

$$= f(t)$$
Example

Let $f(t)$ be a continuous function and let $g(t) = \delta(t)$ and find

$$(f \ast \delta)(t) = \int_0^t \delta(t - \tau)f(\tau) \, d\tau$$

$$= \int_{-\infty}^{\infty} \delta(t - \tau)f(\tau) \, d\tau$$

$$= f(t)$$

Remark: since convolution is like multiplication, we can think of the Dirac delta function as the identity element.
Justification of Convolution Theorem (1 of 4)

By definition

\[\mathcal{L} \{ f(t) \} = F(s) = \int_0^\infty e^{-sz} f(z) \, dz \]

\[\mathcal{L} \{ g(t) \} = G(s) = \int_0^\infty e^{-s\tau} g(\tau) \, d\tau \]

which implies

\[F(s) G(s) = \int_0^\infty e^{-sz} f(z) \, dz \int_0^\infty e^{-s\tau} g(\tau) \, d\tau \]

\[= \int_0^\infty e^{-s\tau} g(\tau) \left[\int_0^\infty e^{-sz} f(z) \, dz \right] \, d\tau \]

\[= \int_0^\infty g(\tau) \left[\int_0^\infty e^{-s(z+\tau)} f(z) \, dz \right] \, d\tau. \]
Justification of Convolution Theorem (2 of 4)

Integrate by substitution letting \(t = z + \tau \) and \(dt = dz \), then

\[
F(s) G(s) = \int_0^\infty \int_0^\infty g(\tau) \left[\int_0^\infty e^{-s(z+\tau)} f(z) \, dz \right] \, d\tau \\
= \int_0^\infty \int_0^\infty g(\tau) \left[\int_{\tau}^\infty e^{-st} f(t - \tau) \, dt \right] \, d\tau \\
= \int_0^\infty \int_{\tau}^\infty e^{-st} f(t - \tau) g(\tau) \, dt \, d\tau.
\]
The iterated integral is carried out over the region in the $t\tau$-plane described by the set

$$R = \{(t, \tau) : \tau \leq t < \infty \text{ and } 0 < \tau < \infty\}.$$
We can change the order of integration to see that

\[
F(s) \cdot G(s) = \int_0^\infty \int_0^t e^{-st} f(t - \tau) g(\tau) \, d\tau \, dt
\]

\[
= \int_0^\infty e^{-st} \left[\int_0^t f(t - \tau) g(\tau) \, d\tau \right] \, dt
\]

\[
= \int_0^\infty e^{-st} h(t) \, dt
\]

\[
= \mathcal{L}\{h(t)\}.
\]
Example

Find the Laplace transform of

\[h(t) = \int_0^t (t - \tau)^2 \cos 2\tau \, d\tau. \]
Example

Find the Laplace transform of

\[h(t) = \int_0^t (t - \tau)^2 \cos 2\tau \, d\tau. \]

\[\mathcal{L} \{ h(t) \} = \mathcal{L} \{ t^2 \ast \cos 2t \} \]

\[= \mathcal{L} \{ t^2 \} \mathcal{L} \{ \cos 2t \} \]

\[= \frac{2}{s^3} \cdot \frac{s}{s^2 + 4} \]

\[= \frac{2}{s^2(s^2 + 4)} \]
Example

Find the inverse Laplace transform of

\[\frac{1}{(s + 1)^2 (s^2 + 4)} \]
Let $F(s) = \frac{1}{(s + 1)^2}$ and $G(s) = \frac{1}{s^2 + 4}$, then

$$\mathcal{L}^{-1} \{ F(s) G(s) \} = \int_0^t f(\tau) g(t - \tau) \, d\tau$$

$$= \frac{1}{2} \int_0^t \tau e^{-\tau} \sin(2(t - \tau)) \, d\tau$$

$$= \frac{1}{2} \int_0^t \tau e^{-\tau} \left(\sin 2t \cos 2\tau - \cos 2t \sin 2\tau \right) \, d\tau$$

$$= \frac{1}{2} \sin 2t \int_0^t \tau e^{-\tau} \cos 2\tau \, d\tau$$

$$- \frac{1}{2} \cos 2t \int_0^t \tau e^{-\tau} \sin 2\tau \, d\tau$$

$$= \frac{1}{50} \left[e^{-t}(4 + 10t) - 4 \cos 2t - 3 \sin 2t \right].$$
Example

Solve the following initial value problem.

\[y^{(4)} + 5y'' + 4y = g(t) \]
\[y(0) = 1 \]
\[y'(0) = 0 \]
\[y''(0) = 0 \]
\[y'''(0) = 0 \]
Solution (1 of 2)

\[G(s) = s^4 Y(s) - s^3 + 5(s^2 Y(s) - s) + 4Y(s) \]

\[Y(s) = \frac{s}{s^2 + 1} + \frac{s}{(s^2 + 1)(s^2 + 4)} + \frac{G(s)}{(s^2 + 1)(s^2 + 4)} \]

\[y(t) = \cos t + \frac{1}{2} \int_0^t \sin 2\tau \cos(t - \tau) \, d\tau \]

\[+ \mathcal{L}^{-1} \left\{ \frac{1}{3} \frac{G(s)}{s^2 + 1} - \frac{1}{6} \frac{2G(s)}{s^2 + 4} \right\} \]

\[= \frac{4}{3} \cos t - \frac{1}{3} \cos 2t \]

\[+ \frac{1}{3} \mathcal{L}^{-1} \left\{ \frac{G(s)}{s^2 + 1} \right\} - \frac{1}{6} \mathcal{L}^{-1} \left\{ \frac{2G(s)}{s^2 + 4} \right\} \]
Solution (2 of 2)

\[y(t) = \frac{4}{3} \cos t - \frac{1}{3} \cos 2t \]

\[+ \frac{1}{3} \mathcal{L}^{-1} \left\{ \frac{G(s)}{s^2 + 1} \right\} - \frac{1}{6} \mathcal{L}^{-1} \left\{ \frac{2G(s)}{s^2 + 4} \right\} \]

\[= \frac{4}{3} \cos t - \frac{1}{3} \cos 2t \]

\[+ \frac{1}{3} \int_0^t \sin(t - \tau) g(\tau) \, d\tau - \frac{1}{6} \int_0^t \sin 2(t - \tau) g(\tau) \, d\tau \]

\[= \frac{4}{3} \cos t - \frac{1}{3} \cos 2t \]

\[+ \frac{1}{3} \int_0^t \left[\sin(t - \tau) - \frac{1}{2} \sin 2(t - \tau) \right] g(\tau) \, d\tau \]
General Case

Consider the general second-order linear, constant coefficient nonhomogeneous IVP.

\[ay'' + by' + cy = g(t) \]
\[y(0) = y_0 \]
\[y'(0) = y'_0 \]

We can solve this general case using the Laplace transform.

\[
G(s) = a(s^2 Y(s) - sy_0 - y'_0) + b(sY(s) - y_0) + cY(s) \\
= (as^2 + bs + c)Y(s) - (as + b)y_0 - ay'_0 \\
Y(s) = \frac{(as + b)y_0 + ay'_0}{as^2 + bs + c} + \frac{G(s)}{as^2 + bs + c} \\
= \Phi(s) + \Psi(s) \\
y(t) = \mathcal{L}^{-1}\{\Phi(s)\} + \mathcal{L}^{-1}\{\Psi(s)\} \\
= \phi(t) + \psi(t)\]
If \(g(t) = 0 \) then \(\Psi(s) = 0 \) and

\[
y(t) = \mathcal{L}^{-1} \{\Phi(s)\} = \phi(t) = y_c(t).
\]

We can check that \(y_c(t) \) satisfies the IVP:

\[
ay'' + by' + cy = 0
\]

\[
y(0) = y_0
\]

\[
y'(0) = y'_0
\]
If \(y(0) = 0 \) and \(y'(0) = 0 \) then the original IVP becomes

\[
ay'' + by' + cy = g(t)
\]

\[
y(0) = 0
\]

\[
y'(0) = 0
\]

and \(\Phi(s) = 0 \). Thus \(Y(t) = \psi(t) = \mathcal{L}^{-1}\{\Psi(s)\} \) is the particular solution to the nonhomogeneous equation.
Transfer Function

\[\psi(s) = \frac{G(s)}{as^2 + bs + c} \]
\[= G(s)(as^2 + bs + c)^{-1} \]
\[= G(s)H(s) \]

where \(H(s) = (as^2 + bs + c)^{-1} \) is called the transfer function.

\[\psi(t) = \mathcal{L}^{-1} \{G(s)H(s)\} = \int_{0}^{t} h(t - \tau) g(\tau) \, d\tau \]

where \(h(t) = \mathcal{L}^{-1} \{H(s)\} \) is called the impulse response of the system.
Homework

- Read Section 6.6
- Exercises: 1–19 odd, 29