Euler Equations
MATH 365 *Ordinary Differential Equations*

J. Robert Buchanan

Department of Mathematics

Spring 2015
Euler Equations

An Euler equation is a simple form of second order linear ODE with a regular singular point at $t_0 = 0$,

$$t^2 y'' + \alpha t y' + \beta y = 0$$

where α and β are constants.
Let $t = e^z$ then according to the chain rule

$$
\frac{dy}{dz} = \frac{dy}{dt} \frac{dt}{dz} = y' e^z = t y'
$$
Let $t = e^z$ then according to the chain rule

\[
\frac{dy}{dz} = \frac{dy}{dt} \frac{dt}{dz} = y' e^z = t y'
\]

\[
\frac{d^2 y}{dz^2} = \frac{d}{dz} \left(\frac{dy}{dz} \right) = \frac{d}{dz} (y' e^z) = (y'' e^z)e^z + y' e^z = t^2 y'' + t y'
\]
Let $t = e^z$ then according to the chain rule

\[
\frac{dy}{dz} = \frac{dy}{dt} \frac{dt}{dz} = y' e^z = t \ y'
\]

\[
\frac{d^2 y}{dz^2} = \frac{d}{dz} \left(\frac{dy}{dz} \right) = \frac{d}{dz} (y' e^z) = (y'' e^z) e^z + y' e^z = t^2 y'' + t \ y'
\]

\[
\frac{d^2 y}{dz^2} - \frac{dy}{dz} = t^2 y''.
\]
By use of the chain rule we have

\[t^2 y'' = \frac{d^2 y}{dz^2} - \frac{dy}{dz} \]

\[t \ y' = \frac{dy}{dz}. \]

Substituting into an Euler's equation we obtain

\[t^2 y'' + \alpha t \ y' + \beta y = 0 \]

\[\left(\frac{d^2 y}{dz^2} - \frac{dy}{dz} \right) + \alpha \frac{dy}{dz} + \beta y = 0 \]

\[\frac{d^2 y}{dz^2} + (\alpha - 1) \frac{dy}{dz} + \beta y = 0. \]
Change of Variable (2 of 2)

By use of the chain rule we have

\[t^2 y'' = \frac{d^2 y}{dz^2} - \frac{dy}{dz} \]
\[t y' = \frac{dy}{dz}. \]

Substituting into an Euler’s equation we obtain

\[t^2 y'' + \alpha t y' + \beta y = 0 \]

\[\left(\frac{d^2 y}{dz^2} - \frac{dy}{dz} \right) + \alpha \frac{dy}{dz} + \beta y = \]
\[\frac{d^2 y}{dz^2} + (\alpha - 1) \frac{dy}{dz} + \beta y = 0. \]

Note: the last equation is of the constant coefficient type, and thus we may solve it via the characteristic equation

\[r^2 + (\alpha - 1)r + \beta = 0. \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + 4t y' + 2y = 0 \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + 4t \, y' + 2y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} + 3 \frac{dy}{dz} + 2y = 0
\]

\[
r^2 + 3r + 2 = 0
\]

\[
(r + 2)(r + 1) = 0
\]

\[y(\zeta) = c_1 e^{-2z} + c_2 e^{-z} = c_1 (e^z)^{-2} + c_2 (e^z)^{-1} \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + 4t y' + 2y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2y}{dz^2} + 3\frac{dy}{dz} + 2y = 0
\]

\[
r^2 + 3r + 2 = 0
\]

\[
(r + 2)(r + 1) = 0
\]

\[
y(z) = c_1 e^{-2z} + c_2 e^{-z}
\]

\[
= c_1 (e^z)^{-2} + c_2 (e^z)^{-1}
\]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + 4t y' + 2y = 0 \]

After the change of variable \(t = e^z \), we have

\[\frac{d^2 y}{dz^2} + 3 \frac{dy}{dz} + 2y = 0 \]

\[r^2 + 3r + 2 = 0 \]

\[(r + 2)(r + 1) = 0 \]

\[y(z) = c_1 e^{-2z} + c_2 e^{-z} \]

\[= c_1 (e^z)^{-2} + c_2 (e^z)^{-1} \]

\[y(t) = c_1 t^{-2} + c_2 t^{-1} \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 4t y' - 6y = 0 \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 4t y' - 6y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} - 5 \frac{dy}{dz} - 6y = 0
\]

\[r^2 - 5r - 6 = 0 \]

\[(r - 6)(r + 1) = 0 \]

\[y(z) = c_1 e^{6z} + c_2 e^{-z} \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 4t \, y' - 6y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} - 5 \frac{dy}{dz} - 6y = 0
\]

\[
r^2 - 5r - 6 = 0
\]

\[
(r - 6)(r + 1) = 0
\]

\[
y(z) = c_1 e^{6z} + c_2 e^{-z}
\]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 4t y' - 6y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} - 5\frac{dy}{dz} - 6y = 0
\]

\[r^2 - 5r - 6 = 0 \]

\[(r - 6)(r + 1) = 0 \]

\[y(z) = c_1 e^{6z} + c_2 e^{-z} \]

\[y(t) = c_1 t^6 + c_2 t^{-1} \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 3t y' + 4y = 0 \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 3t y' + 4y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2y}{dz^2} - 4 \frac{dy}{dz} + 4y = 0
\]

\[
r^2 - 4r + 4 = 0
\]

\[
(r - 2)^2 = 0
\]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 3t y' + 4y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} - 4 \frac{dy}{dz} + 4y = 0
\]

\[r^2 - 4r + 4 = 0 \]

\[(r - 2)^2 = 0 \]

\[y(z) = c_1 e^{2z} + c_2 ze^{2z} \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' - 3t y' + 4y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} - 4 \frac{dy}{dz} + 4y = 0
\]

\[
r^2 - 4r + 4 = 0
\]

\[
(r - 2)^2 = 0
\]

\[
y(z) = c_1 e^{2z} + c_2 z e^{2z}
\]

\[
y(t) = c_1 t^2 + c_2 (\ln t) t^2
\]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + t y' + y = 0 \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + t y' + y = 0 \]

After the change of variable \(t = e^z \), we have

\[\frac{d^2 y}{dz^2} + (0) \frac{dy}{dz} + y = 0 \]

\[r^2 + 1 = 0 \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + t y' + y = 0 \]

After the change of variable \(t = e^z \), we have

\[\frac{d^2 y}{dz^2} + (0) \frac{dy}{dz} + y = 0 \]
\[r^2 + 1 = 0 \]
\[y(z) = c_1 \cos z + c_2 \sin z \]
Example

Find the general solution of the following Euler equation.

\[t^2 y'' + t y' + y = 0 \]

After the change of variable \(t = e^z \), we have

\[
\frac{d^2 y}{dz^2} + (0) \frac{dy}{dz} + y = 0
\]

\[
r^2 + 1 = 0
\]

\[
y(z) = c_1 \cos z + c_2 \sin z
\]

\[
y(t) = c_1 \cos(\ln t) + c_2 \sin(\ln t)
\]
Find the general solution of the following nonhomogeneous Euler equation.

\[t^2 y'' + 7t y' + 5y = t \]
Example (1 of 2)

Find the general solution of the following nonhomogeneous Euler equation.

\[t^2 y'' + 7t y' + 5y = t \]

First we find the complementary solution:

\[y_c(t) = c_1 t^{-5} + c_2 t^{-1}. \]
Example (1 of 2)

Find the general solution of the following nonhomogeneous Euler equation.

\[t^2 y'' + 7t y' + 5y = t \]

First we find the complementary solution:

\[y_c(t) = c_1 t^{-5} + c_2 t^{-1}. \]

Re-writing the nonhomogeneous equation as

\[y'' + \frac{7}{t} y' + \frac{5}{t^2} y = \frac{1}{t} \]

we may use the method of Variation of Parameters to find a particular solution.
Example (2 of 2)

\[
W(y_1, y_2)(t) &= 4t^{-7} \\
\mu_1(t) &= -\int_1^t \frac{s^{-1} s^{-1}}{4s^{-7}} \, ds = -\frac{1}{24}(t^6 - 1) \\
\mu_2(t) &= \int_1^t \frac{s^{-1} s^{-5}}{4s^{-7}} \, ds = \frac{1}{8}(t^2 - 1) \\
Y(t) &= -\frac{1}{24}(t^6 - 1)t^{-5} + \frac{1}{8}(t^2 - 1)t^{-1} \\
&= \frac{1}{12}t + \frac{1}{24}t^{-5} + \frac{1}{8}t^{-1}
\]
Example (2 of 2)

\[W(y_1, y_2)(t) = 4t^{-7} \]

\[\mu_1(t) = -\int_1^t \frac{s^{-1}s^{-1}}{4s^{-7}} \, ds = -\frac{1}{24} (t^6 - 1) \]

\[\mu_2(t) = \int_1^t \frac{s^{-1}s^{-5}}{4s^{-7}} \, ds = \frac{1}{8} (t^2 - 1) \]

\[Y(t) = -\frac{1}{24} (t^6 - 1)t^{-5} + \frac{1}{8} (t^2 - 1)t^{-1} \]

\[= \frac{1}{12} t + \frac{1}{24} t^{-5} + \frac{1}{8} t^{-1} \]

\[y(t) = c_1 t^{-5} + c_2 t^{-1} + \frac{1}{12} t \]
Method of Undetermined Coefficients

Luckily we could have used the Method of Undetermined Coefficients to find the particular solution.

Transform the entire nonhomogeneous equation.

\[t^2 y'' + 7ty' + 5y = t \]
\[y''(z) + 6y'(z) + 5y(z) = e^z \]

The particular solution should be of the form \(Y(z) = Ae^z \).

\[Ae^z + 6Ae^z + 5Ae^z = e^z \]
\[12A = 1 \quad \implies \quad A = 1/12 \]

\[Y(z) = \frac{1}{12}e^z \quad \implies \quad Y(t) = \frac{1}{12}t \]

You should not expect this to happen in every example.
Method of Undetermined Coefficients

Luckily we could have used the Method of Undetermined Coefficients to find the particular solution.

Transform the entire nonhomogeneous equation.

\[t^2 y'' + 7ty' + 5y = t \]
\[y''(z) + 6y'(z) + 5y(z) = e^z \]

The particular solution should be of the form \(Y(z) = Ae^z \).

\[Ae^z + 6Ae^z + 5Ae^z = e^z \]
\[12A = 1 \quad \implies \quad A = 1/12 \]

\[Y(z) = \frac{1}{12}e^z \quad \implies \quad Y(t) = \frac{1}{12}t \]

You should not expect this to happen in every example.
Given an Euler equation \(t^2 y'' + \alpha t \ y' + \beta y = 0 \) the transformed equation is of the form

\[
\frac{d^2 y}{dz^2} + (\alpha - 1) \frac{dy}{dz} + \beta y = 0
\]

where \(t = e^z \).

The transformed equation has characteristic equation

\[
r^2 + (\alpha - 1)r + \beta = 0
\]

which has roots

\[
r_{1,2} = \frac{(1 - \alpha) \pm \sqrt{(\alpha - 1)^2 - 4\beta}}{2}.
\]
If r_1 and $r_2 \in \mathbb{R}$ and $r_1 \neq r_2$ then the general solution to Euler’s equation is

$$y(t) = c_1 t^{r_1} + c_2 t^{r_2}.$$

If $r_1 = r_2 = r \in \mathbb{R}$ then the general solution to Euler’s equation is

$$y(t) = (c_1 + c_2 (\ln t)) t^r.$$
If \(r_1 = \lambda - \mu i \) and \(r_2 = \lambda + \mu i \) where \(i = \sqrt{-1} \) and \(\mu \neq 0 \) then the general solution to Euler’s equation is

\[
y(t) = t^\lambda \left[c_1 \cos(\mu \ln t) + c_2 \sin(\mu \ln t) \right].
\]
Homework

- Read Section 5.4
- Exercises: 1–15 odd