Series Solutions Near an Ordinary Point
MATH 365 Ordinary Differential Equations

J. Robert Buchanan

Department of Mathematics

Spring 2015
Consider the second order linear homogeneous ODE:

\[P(t)y'' + Q(t)y' + R(t)y = 0 \]

where \(P, Q, \) and \(R \) are polynomials.

Definition

A point \(t_0 \) such that \(P(t_0) \neq 0 \) is called an ordinary point. If \(P(t_0) = 0 \) then \(t_0 \) is called a singular point.
\[P(t)y'' + Q(t)y' + R(t)y = 0 \]

If \(t_0 \) is an ordinary point, then by continuity there exists an interval \((a, b)\) containing \(t_0 \) on which \(P(t) \neq 0 \) for all \(t \in (a, b) \).

Thus the functions \(p(t) = \frac{Q(t)}{P(t)} \) and \(q(t) = \frac{R(t)}{P(t)} \) are defined and continuous on \((a, b)\) and the ODE can be written as

\[y'' + p(t)y' + q(t)y = 0. \]

If the initial conditions are \(y(t_0) = y_0 \) and \(y'(t_0) = y'_0 \) then there exists a unique solution to the ODE satisfying the initial conditions.
Consider the ODE
\[y'' - 4y = 0 \]
and find a power series solution with positive radius of convergence centered at an ordinary point.
Consider the ODE
\[y'' - 4y = 0 \]
and find a power series solution with positive radius of convergence centered at an ordinary point. Let \(t_0 = 0 \) be the ordinary point for simplicity and

\[
y(t) = \sum_{n=0}^{\infty} a_n t^n
\]
Consider the ODE

\[y'' - 4y = 0 \]

and find a power series solution with positive radius of convergence centered at an ordinary point. Let \(t_0 = 0 \) be the ordinary point for simplicity and

\[
\begin{align*}
y(t) &= \sum_{n=0}^{\infty} a_n t^n \\
y'(t) &= \sum_{n=1}^{\infty} na_n t^{n-1} \\
y''(t) &= \sum_{n=2}^{\infty} n(n-1) a_n t^{n-2}.
\end{align*}
\]

Substitute into the ODE.
0 = y'' − 4y
Power Series Solutions (2 of 5)

\[0 = y'' - 4y \]
\[= \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 4 \sum_{n=0}^{\infty} a_n t^n \]

This last equation is called a recurrence relation.
Power Series Solutions (2 of 5)

\[0 = y'' - 4y \]

\[= \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 4 \sum_{n=0}^{\infty} a_n t^n \]

\[= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n - 4 \sum_{n=0}^{\infty} a_n t^n \]

\[= \sum_{n=0}^{\infty} \left[a_{n+2}(n+2)(n+1) - 4a_n \right] t^n \]

This last equation is called a recurrence relation.
Power Series Solutions (2 of 5)

\[0 = y'' - 4y\]

\[= \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - 4 \sum_{n=0}^{\infty} a_n t^n\]

\[= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n - 4 \sum_{n=0}^{\infty} a_n t^n\]

\[= \sum_{n=0}^{\infty} [a_{n+2}(n+2)(n+1) - 4a_n] t^n\]

\[0 = a_{n+2}(n+2)(n+1) - 4a_n \quad \text{(for } n = 0, 1, 2, \ldots)\]

\[a_{n+2} = \frac{2^2 a_n}{(n+2)(n+1)}\]

This last equation is called a recurrence relation.
Let a_0 be arbitrary, then

\[a_2 = \frac{2^2}{(2)(1)} a_0 = \frac{2^2}{2!} a_0 \]
\[a_4 = \frac{2^2}{(4)(3)} a_2 = \frac{2^4}{4!} a_0 \]
\[a_6 = \frac{2^2}{(6)(5)} a_4 = \frac{2^6}{6!} a_0 \]
\[\vdots \]
\[a_{2n} = \frac{2^{2n}}{(2n)!} a_0. \]
Let a_1 be arbitrary, then

\[
\begin{align*}
 a_3 &= \frac{2^2}{(3)(2)} a_1 = \frac{2^2}{3!} a_1 \\
 a_5 &= \frac{2^2}{(5)(4)} a_3 = \frac{2^4}{5!} a_1 \\
 a_7 &= \frac{2^2}{(7)(6)} a_5 = \frac{2^6}{7!} a_1 \\
 &\vdots \\
 a_{2n+1} &= \frac{2^{2n}}{(2n + 1)!} a_1.
\end{align*}
\]
Thus the general solution to $y'' - 4y = 0$ can be written as

$$y(t) = \sum_{n=0}^{\infty} a_{2n} t^{2n} + \sum_{n=0}^{\infty} a_{2n+1} t^{2n+1}$$

$$= a_0 \sum_{n=0}^{\infty} \frac{2^{2n}}{(2n)!} t^{2n} + a_1 \sum_{n=0}^{\infty} \frac{2^{2n}}{(2n + 1)!} t^{2n+1}$$

$$= a_0 \sum_{n=0}^{\infty} \frac{(2t)^{2n}}{(2n)!} + \frac{a_1}{2} \sum_{n=0}^{\infty} \frac{(2t)^{2n+1}}{(2n + 1)!}$$

$$= a_0 \cosh(2t) + \frac{a_1}{2} \sinh(2t)$$

We can confirm this series converges for all $t \in \mathbb{R}$.
Airy’s Equation (1 of 6)

Find a power series solution about the ordinary point $t_0 = 0$ to Airy’s equation:

$$y'' - t\, y = 0.$$
Airy’s Equation (1 of 6)

Find a power series solution about the ordinary point $t_0 = 0$ to Airy’s equation:

$$y'' - t y = 0.$$

$$y(t) = \sum_{n=0}^{\infty} a_n t^n$$

$$y'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$$

$$y''(t) = \sum_{n=2}^{\infty} n(n-1) a_n t^{n-2}.$$

Substitute into the ODE.
Airy’s Equation (2 of 6)

\[0 = y'' - ty \]

\[= \sum_{n=2}^{\infty} n(n-1)a_n t^{n-2} - t \sum_{n=0}^{\infty} a_n t^n \]

\[= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=0}^{\infty} a_n t^{n+1} \]

\[= 2a_2 + \sum_{n=1}^{\infty} (n+2)(n+1)a_{n+2} t^n - \sum_{n=1}^{\infty} a_{n-1} t^n \]

\[= 2a_2 + \sum_{n=1}^{\infty} [(n+2)(n+1)a_{n+2} - a_{n-1}] t^n \]
Thus

\[0 = 2a_2 \]
\[0 = (n + 2)(n + 1)a_{n+2} - a_{n-1} \quad \text{(for } n = 1, 2, \ldots) \]

From the last equation we obtain the recurrence relation:

\[a_{n+2} = \frac{a_{n-1}}{(n + 2)(n + 1)}. \]
Thus

\[0 = 2a_2 \]
\[0 = (n + 2)(n + 1)a_{n+2} - a_{n-1} \quad (\text{for } n = 1, 2, \ldots) \]

From the last equation we obtain the recurrence relation:

\[a_{n+2} = \frac{a_{n-1}}{(n + 2)(n + 1)}. \]

Since \(a_2 = 0 \) then \(a_5 = a_8 = a_{11} = \cdots = 0. \)
Let a_0 be arbitrary then

\[
\begin{align*}
a_3 & = \frac{a_0}{2 \cdot 3} \\
a_6 & = \frac{a_3}{5 \cdot 6} = \frac{a_0}{6 \cdot 5 \cdot 3 \cdot 2} \\
a_9 & = \frac{a_6}{8 \cdot 9} = \frac{a_0}{9 \cdot 8 \cdot 6 \cdot 5 \cdot 3 \cdot 2}
\end{align*}
\]

\[\vdots\]

\[
a_{3n} = \frac{a_0}{(2)(3)(5)(6) \cdots (3n - 4)(3n - 3)(3n - 1)(3n)}.
\]
Let a_1 be arbitrary then

\[
\begin{align*}
 a_4 &= \frac{a_1}{3 \cdot 4} \\
 a_7 &= \frac{a_4}{6 \cdot 7} = \frac{a_1}{7 \cdot 6 \cdot 4 \cdot 3} \\
 a_{10} &= \frac{a_7}{9 \cdot 10} = \frac{a_1}{10 \cdot 9 \cdot 7 \cdot 6 \cdot 4 \cdot 3} \\
 &\vdots \\
 a_{3n+1} &= \frac{a_1}{(3)(4)(6)(7) \cdots (3n-3)(3n-2)(3n)(3n+1)}.
\end{align*}
\]
Airy’s Equation (6 of 6)

Thus the solution to Airy’s equation

\[y'' - ty = 0 \]

is

\[y(t) = a_0 \left[1 + \sum_{n=1}^{\infty} \frac{t^{3n}}{(2)(3)(5)(6) \cdots (3n - 4)(3n - 3)(3n - 1)(3n)} \right] + a_1 \left[t + \sum_{n=1}^{\infty} \frac{t^{3n+1}}{(3)(4)(6)(7) \cdots (3n - 3)(3n - 2)(3n)(3n + 1)} \right] = a_0 y_1(t) + a_1 y_2(t). \]
Homework

- Read Section 5.2
- Exercises: 1, 2, 3, 5, 6, 21
We have determined a method for solving an ODE of the form

$$P(t)y'' + Q(t)y' + R(t)y = 0$$

where P, Q, and R are polynomials.

The solution is a power series of the form

$$y(t) = \sum_{n=0}^{\infty} a_n(t - t_0)^n$$

where t_0 is an ordinary point.
Review

We have determined a method for solving an ODE of the form

$$P(t)y'' + Q(t)y' + R(t)y = 0$$

where P, Q, and R are polynomials.

The solution is a power series of the form $y(t) = \sum_{n=0}^{\infty} a_n(t - t_0)^n$ where t_0 is an ordinary point.

Today we extend this work to a broader range of functions than polynomial P, Q, and R.
Differentiation of Power Series

Suppose \(\phi(t) = \sum_{n=0}^{\infty} a_n(t - t_0)^n \) has a positive radius of convergence, then we may differentiate the series term-by-term.

\[
\begin{array}{c|c|c}
 n & \phi^{(n)}(t) & \phi^{(n)}(t_0) \\
\hline
0 & \sum_{n=0}^{\infty} a_n(t - t_0)^n & a_0 \\
1 & \sum_{n=1}^{\infty} na_n(t - t_0)^{n-1} & a_1 \\
2 & \sum_{n=2}^{\infty} n(n - 1)a_n(t - t_0)^{n-2} & 2a_2 \\
\vdots & \vdots & \vdots \\
m & \sum_{n=m}^{\infty} n(n - 1)\cdots(n - m + 1)a_n(t - t_0)^{n-m} & m!a_m \\
\end{array}
\]
Solution to an ODE

Suppose \(\phi(t) \) solves the ODE \(y'' + p(t)y' + q(t)y = 0 \) then

\[
0 = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t)
\]

\[
\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)
\]
Suppose $\phi(t)$ solves the ODE $y'' + p(t)y' + q(t)y = 0$ then

\[
0 = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t)
\]

\[
\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)
\]

\[
\phi''(t_0) = -p(t_0)\phi'(t_0) - q(t_0)\phi(t_0)
\]
Solution to an ODE

Suppose \(\phi(t) \) solves the ODE \(y'' + p(t)y' + q(t)y = 0 \) then

\[
0 = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t)
\]

\[
\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)
\]

\[
\phi''(t_0) = -p(t_0)\phi'(t_0) - q(t_0)\phi(t_0)
\]

\[
2!a_2 = -p(t_0)a_1 - q(t_0)a_0.
\]
Suppose $\phi(t)$ solves the ODE $y'' + p(t)y' + q(t)y = 0$ then

$$0 = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t)$$

$$\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)$$

$$\phi''(t_0) = -p(t_0)\phi'(t_0) - q(t_0)\phi(t_0)$$

$$2!a_2 = -p(t_0)a_1 - q(t_0)a_0.$$

Thus we may find a_2 in terms of a_0 and a_1.

Solution to an ODE
Continued Differentiation (1 of 2)

With patience we can find higher order terms in the series solution through continued differentiation.

\[
\begin{align*}
\phi''(t) &= -p(t)\phi'(t) - q(t)\phi(t) \\
\phi'''(t) &= -p'(t)\phi'(t) - p(t)\phi''(t) - q'(t)\phi(t) - q(t)\phi'(t)
\end{align*}
\]
Continued Differentiation (1 of 2)

With patience we can find higher order terms in the series solution through **continued differentiation**.

\[
\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)
\]

\[
\phi'''(t) = -p'(t)\phi'(t) - p(t)\phi''(t) - q'(t)\phi(t) - q(t)\phi'(t)
\]

\[
\phi'''(t_0) = -p'(t_0)\phi'(t_0) - p(t_0)\phi''(t_0) - q'(t_0)\phi(t_0) - q(t_0)\phi'(t_0)
\]

\[
3!a_3 = -p'(t_0)a_1 - 2p(t_0)a_2 - q'(t_0)a_0 - q(t_0)a_1
\]
Continued Differentiation (1 of 2)

With patience we can find higher order terms in the series solution through **continued differentiation**.

\[
\phi''(t) = -p(t)\phi'(t) - q(t)\phi(t)
\]

\[
\phi'''(t) = -p'(t)\phi'(t) - p(t)\phi''(t) - q'(t)\phi(t) - q(t)\phi'(t)
\]

\[
\phi'''(t_0) = -p'(t_0)\phi'(t_0) - p(t_0)\phi''(t_0) - q'(t_0)\phi(t_0) - q(t_0)\phi'(t_0)
\]

\[
3!a_3 = -p'(t_0)a_1 - 2p(t_0)a_2 - q'(t_0)a_0 - q(t_0)a_1
\]

Substituting the previously determined value of \(a_2\) we may find \(a_3\) in terms of \(a_0\) and \(a_1\).
Continued Differentiation (2 of 2)

We can proceed by repeated differentiation to find a_4, a_5, ... provided:

- $p(t)$ and $q(t)$ have derivatives of all orders, and
- we can show the resulting power series converges.
Continued Differentiation (2 of 2)

We can proceed by repeated differentiation to find a_4, a_5, ... provided:

- $p(t)$ and $q(t)$ have derivatives of all orders, and
We can proceed by repeated differentiation to find a_4, a_5, ... provided:

- $p(t)$ and $q(t)$ have derivatives of all orders, and
- we can show the resulting power series converges.
Example
Assuming that \(y = \phi(t) \) is a solution to the IVP:

\[
y'' + t^2 y' + (\sin t)y = 0
\]
\[
y(0) = 1
\]
\[
y'(0) = -1
\]

find the first four nonzero terms in the power series representation of \(\phi(t) \).
Example

Assuming that $y = \phi(t)$ is a solution to the IVP:

$$y'' + t^2 y' + (\sin t)y = 0$$

$$y(0) = 1$$

$$y'(0) = -1$$

find the first four nonzero terms in the power series representation of $\phi(t)$.

$$a_0 = 1$$

$$a_1 = -1$$

$$a_2 = 0$$

$$a_3 = -\frac{1}{3!}$$

$$a_4 = \frac{1}{3!}$$
Analytic Functions

If \(p(t) \) and \(q(t) \) are analytic functions at \(t_0 \), in other words have Taylor series expansions about \(t_0 \) which converge to \(p(t) \) and \(q(t) \) respectively then \(p \) and \(q \) will have derivatives of all orders at \(t_0 \).

\[
p(t) = \sum_{n=0}^{\infty} p_n(t - t_0)^n
\]

\[
q(t) = \sum_{n=0}^{\infty} q_n(t - t_0)^n
\]
Suppose

\[P(t)y'' + Q(t)y' + R(t)y = 0 \]
\[y'' + \frac{Q(t)}{P(t)}y' + \frac{R(t)}{P(t)}y = 0 \]
\[y'' + p(t)y' + q(t)y = 0 \]

where

\[p(t) = \frac{Q(t)}{P(t)} \quad \text{and} \quad q(t) = \frac{R(t)}{P(t)} \]
Ordinary and Singular Points Revisited

Suppose

\[P(t)y'' + Q(t)y' + R(t)y = 0 \]
\[y'' + \frac{Q(t)}{P(t)}y' + \frac{R(t)}{P(t)}y = 0 \]
\[y'' + p(t)y' + q(t)y = 0 \]

where

\[p(t) = \frac{Q(t)}{P(t)} \quad \text{and} \quad q(t) = \frac{R(t)}{P(t)} \]

If \(p(t) \) and \(q(t) \) are analytic at \(t_0 \), then we say that \(t_0 \) is an ordinary point of the ODE. Otherwise \(t_0 \) is a singular point.
Main Result

Theorem
If t_0 is an ordinary point of the ODE

$$P(t)y'' + Q(t)y' + R(t)y = 0$$

then the general solution of the ODE is

$$y(t) = \sum_{n=0}^{\infty} a_n (t - t_0)^n = a_0 y_1(t) + a_1 y_2(t)$$

where a_0 and a_1 are arbitrary and y_1 and y_2 are linearly independent series solutions that are analytic at t_0. Further the radius of convergence for each of y_1 and y_2 is at least as large as the minimum of the radii of convergence for the series $p(t) = Q(t)/P(t)$ and $q(t) = R(t)/P(t)$.
Radius of Convergence

If \(p(t) = \frac{Q(t)}{P(t)} \) and \(q(t) = \frac{R(t)}{P(t)} \) and \(p(t) \) and \(q(t) \) are analytic at \(t_0 \) then from the theory of complex variables we have the result that

the radius of convergence of \(p(t) \) (and similarly \(q(t) \)) is at least as large as the minimum distance from \(t_0 \) to any root of \(P(t) \) in the complex plane.
Example

The value \(t_0 = 1 \) is an ordinary point of the ODE

\[t^2 y'' + (1 + t)y' + 3(\ln t)y = 0. \]

Find the radius of convergence of \(p(t) = \frac{1 + t}{t^2} \) and \(q(t) = \frac{3 \ln t}{t^2} \).
Example

The value $t_0 = 0$ is an ordinary point of the ODE

$$(1 + t^4)y'' + 4ty' + y = 0.$$

Find the radius of convergence of $p(t) = \frac{4t}{1 + t^4}$ and $q(t) = \frac{1}{1 + t^4}$.

Using Euler's Identity:

$$t^4 + 1 = 0 \quad t^4 = -1 = e^{i(2n + 1)\pi/4} \quad t = \pm \sqrt{2}/2 \pm i\sqrt{2}/2.$$
Example

The value $t_0 = 0$ is an ordinary point of the ODE

$$(1 + t^4)y'' + 4ty' + y = 0.$$

Find the radius of convergence of $p(t) = \frac{4t}{1 + t^4}$ and $q(t) = \frac{1}{1 + t^4}$.

Using Euler's Identity:

\[
t^4 + 1 = 0
\]

\[
t^4 = -1 = e^{i(2n+1)\pi}
\]

\[
t = e^{i(2n+1)\pi/4}
\]

\[
t = \pm \frac{\sqrt{2}}{2} \pm i \frac{\sqrt{2}}{2}.
\]
Example

The value $t_0 = 1$ is an ordinary point of the ODE

$$(1 + t^4)y'' + 4ty' + y = 0.$$

Find the radius of convergence of $p(t) = \frac{4t}{1 + t^4}$ and $q(t) = \frac{1}{1 + t^4}$.
Illustration
Homework

- Read Section 5.3
- Exercises: 1–7 odd, 10, 11, 22–29