Machine Numbers

When performing arithmetic on a computer (laptop, desktop, mainframe, cell phone, etc.) we will primarily work with two types of numbers:

Integers: whole numbers in a specified range.

Floating point: approximations to real numbers.
2’s Complement Integers

Suppose an integer is represented using n bits (e.g., $n = 32$) bits in 2’s complement format.

- Index the bits from right to left.

<table>
<thead>
<tr>
<th>Bit</th>
<th>31</th>
<th>30</th>
<th>29</th>
<th>...</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-(2^{31})$</td>
<td>2^{30}</td>
<td>2^{29}</td>
<td>...</td>
<td>2^2</td>
<td>2^1</td>
<td>2^0</td>
</tr>
</tbody>
</table>

- If the ith bit is set, the quantity in the ith column is added.
Example (1 of 2)

<table>
<thead>
<tr>
<th>Sign</th>
<th>30</th>
<th>29</th>
<th>...</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0000000000000000000000000100</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[x = 2^5 + 2^1 + 2^0 = 32 + 2 + 1 = 35 \]
Example (2 of 2)

<table>
<thead>
<tr>
<th>Sign</th>
<th>30</th>
<th>29</th>
<th>...</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>00000000000000000000000000100</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
x = -(2^{31}) + 2^{29} + 2^5 + 2^1 + 2^0 \\
 = -2147483648 + 536870912 + 32 + 2 + 1 \\
 = -1610612701
\]
Range of Integers

1. What are the smallest and largest integers which can be represented in 32-bit 2’s complement format?
Range of Integers

1. What are the smallest and largest integers which can be represented in 32-bit 2’s complement format?

\[
\begin{align*}
\text{min}_{32} &= -(2^{31}) = -2147483648 \\
\text{max}_{32} &= \sum_{i=0}^{30} 2^i = 2147483647
\end{align*}
\]
Range of Integers

1. What are the smallest and largest integers which can be represented in 32-bit 2’s complement format?

\[
\begin{align*}
\min_{32} &= -(2^{31}) = -2147483648 \\
\max_{32} &= \sum_{i=0}^{30} 2^i = 2147483647
\end{align*}
\]

2. What are the smallest and largest integers which can be represented in 64-bit 2’s complement format?
Range of Integers

1. What are the smallest and largest integers which can be represented in 32-bit 2’s complement format?

\[
\begin{align*}
\text{min}_{32} &= - (2^{31}) = -2147483648 \\
\text{max}_{32} &= \sum_{i=0}^{30} 2^i = 2147483647
\end{align*}
\]

2. What are the smallest and largest integers which can be represented in 64-bit 2’s complement format?

\[
\begin{align*}
\text{min}_{64} &= - (2^{63}) = -9223372036854775808 \\
\text{max}_{64} &= \sum_{i=0}^{62} 2^i = 9223372036854775807
\end{align*}
\]
Floating Point Numbers

Consider representing a real number like \(\pi \) in some binary format.
Floating Point Numbers

Consider representing a real number like π in some binary format.

- π is transcendental (non-repeating, non-terminating decimal number)
Floating Point Numbers

Consider representing a real number like \(\pi\) in some binary format.

- \(\pi\) is transcendental (non-repeating, non-terminating decimal number)
- In any finite number of binary digits, \(\pi\) can only be approximated by some rational number. There will be round-off error.
Floating Point Numbers

Consider representing a real number like π in some binary format.

- π is transcendental (non-repeating, non-terminating decimal number)
- In any finite number of binary digits, π can only be approximated by some rational number. There will be round-off error.
- Round-off error will be present when representing any real number which is not a power of 2.
The Institute for Electrical and Electronic Engineers (IEEE) published the *Binary Floating Point Arithmetic Standard 754-2008* which specified storage and transmission formats for floating point numbers and algorithms for rounding arithmetic operations. Consider the 64-bit representation.

s: sign bit

c: characteristic, 11-bit exponent with base 2, according to IEEE 754-2008, $1 \leq c \leq 2046$ always

f: mantissa, 52-bit binary fraction

\[x = (-1)^s 2^{c-1023} (1 + f) \]
This number is positive since \((-1)^0 = 1\).

\[
\begin{align*}
c &= 2^{10} + 2^2 + 2^0 = 1024 + 4 + 1 = 1029 \\
f &= \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^4 + \left(\frac{1}{2}\right)^5 + \left(\frac{1}{2}\right)^6 + \left(\frac{1}{2}\right)^7 + \left(\frac{1}{2}\right)^9 = \frac{317}{512} \\
x &= (-1)^0 \cdot 2^{1029-1023} \left(1 + \frac{317}{512}\right) = \frac{829}{8} \\
 &= 103.625000000000000000000
\end{align*}
\]
Interval of Real Numbers

The previous example actually represents an interval of numbers. Consider the next smaller and next larger floating point numbers.

<table>
<thead>
<tr>
<th>s</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000000101</td>
<td>100111100111111</td>
</tr>
<tr>
<td>0</td>
<td>10000000101</td>
<td>100111101000000</td>
</tr>
<tr>
<td>0</td>
<td>10000000101</td>
<td>100111101000001</td>
</tr>
</tbody>
</table>

$x_s = 103.6249999999998579$

$x = 103.6250000000000000$

$x_l = 103.6250000000001421$
Interval of Real Numbers

The previous example actually represents an interval of numbers. Consider the next smaller and next larger floating point numbers.

<table>
<thead>
<tr>
<th>s</th>
<th>c</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100000000101</td>
<td>100111100111\cdots111</td>
</tr>
<tr>
<td>0</td>
<td>100000000101</td>
<td>100111101000\cdots000</td>
</tr>
<tr>
<td>0</td>
<td>100000000101</td>
<td>100111101000\cdots001</td>
</tr>
</tbody>
</table>

\[x_s = 103.624999999999998579 \]
\[x = 103.625000000000000000 \]
\[x_I = 103.625000000000001421 \]

Upon rounding \(x \) represents all real numbers in the interval \[(103.6249999999999289, 103.62500000000000711). \]
Floating Point Limits

- Smallest, non-zero positive floating point number:
 \[\epsilon = 2^{-1022} \]
 \[= 1.17 	imes 10^{-38} \]

- Largest floating point number:
 \[2^{1023} - 1 \]
 \[= 1.79 	imes 10^{308} \]
Floating Point Limits

- Smallest, non-zero positive floating point number:
 \[\epsilon = (-1)^0 \times 2^{1-1023} \times (1 + 0) \approx 0.22251 \times 10^{-307} \]

- Largest floating point number:
Floating Point Limits

- Smallest, non-zero positive floating point number:
 \[\epsilon = (-1)^0 2^{1-1023} (1 + 0) \approx 0.22251 \times 10^{-307} \]

- Largest floating point number:
 \[\infty = (-1)^0 2^{2046-1023} (1 + 1 - 2^{-52}) \approx 0.17977 \times 10^{309} \]
Decimal (Base-10) Floating Point Numbers

- We will express floating point numbers in base-10 form for simplicity.
- If x is a non-zero real number, then x can be represented as
 \[\pm 0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n \]
 where $1 \leq d_1 \leq 9$ and $0 \leq d_k \leq 9$ for $k > 1$.
Decimal (Base-10) Floating Point Numbers

- We will express floating point numbers in base-10 form for simplicity.

- If \(x \) is a non-zero real number, then \(x \) can be represented as

\[
\pm 0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n
\]

where 1 \(\leq \) \(d_1 \) \(\leq \) 9 and 0 \(\leq \) \(d_k \) \(\leq \) 9 for \(k > 1 \).

- The \(k \)-digit decimal machine number corresponding to \(x \) will be denoted \(fl (x) \) and is determined by rounding.

 - To round we may perform chopping by ignoring all the decimal digits beyond the \(k \)th,

\[
fl (0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n) = 0.d_1 d_2 \ldots d_{k-1} d_k \times 10^n
\]

 - or we may perform rounding in the \(k \)th decimal place.

\[
fl (0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n) = 0.\delta_1 \delta_2 \ldots \delta_{k-1} \delta_k \times 10^n
\]
Example

Determine the 5-digit representations for e using

1. chopping,
2. rounding.
Determine the 5-digit representations for e using

$$e \approx 0.2718281828 \times 10^1$$

1. chopping,
2. rounding.
Example

Determine the 5-digit representations for e using

$$ e \approx 0.2718281828 \times 10^1 $$

1. chopping, $fl(e) = 0.27182 \times 10^1$
2. rounding.
Example

Determine the 5-digit representations for e using

$$e \approx 0.2718281828 \times 10^1$$

1. chopping, $fl(e) = 0.27182 \times 10^1$
2. rounding. $fl(e) = 0.27183 \times 10^1$
Definition
Suppose that \(\hat{p} \) is an approximation to \(p \).

- The **actual error** is \(p - \hat{p} \).
- The **absolute error** is \(|p - \hat{p}| \).
- The **relative error** is \(\frac{|p - \hat{p}|}{|p|} \) provided \(p \neq 0 \).
Approximation Errors

Definition
Suppose that \hat{p} is an approximation to p.

- The **actual error** is $p - \hat{p}$.
- The **absolute error** is $|p - \hat{p}|$.
- The **relative error** is $\frac{|p - \hat{p}|}{|p|}$ provided $p \neq 0$.

Remark: the relative error is generally preferred as a measure of accuracy, since it takes into consideration, the magnitude of the number being approximated.
Example

Determine the absolute and relative error present in each of the 5-digit approximations to e.

- **Chopping**
 - $\hat{e} = 2.7182$:
 - $|e - \hat{e}| \approx 0.18285 \times 10^{-5}$ and $|e - \hat{e}|/e \approx 3.0103 \times 10^{-5}$

- **Rounding**
 - $\hat{e} = 2.7183$:
 - $|e - \hat{e}| \approx 1.81715 \times 10^{-5}$ and $|e - \hat{e}|/e \approx 6.68494 \times 10^{-6}$
Determine the absolute and relative error present in each of the 5-digit approximations to e.

- **Chopping $\hat{e} = 2.7182$:**

 $$|e - \hat{e}| \approx 8.18285 \times 10^{-5} \quad \text{and} \quad \frac{|e - \hat{e}|}{e} \approx 3.0103 \times 10^{-5}$$

- **Rounding $\hat{e} = 2.7183$:**

 $$|e - \hat{e}| \approx 1.81715 \times 10^{-5} \quad \text{and} \quad \frac{|e - \hat{e}|}{e} \approx 6.68494 \times 10^{-6}$$
Definition
The number \(\hat{p} \) is said to approximate \(p \) to \(t \) **significant digits** if \(t \) is the largest non-negative integer for which

\[
\frac{|p - \hat{p}|}{|p|} \leq 5 \times 10^{-t}.
\]
Example

Suppose that \hat{p} agrees with p to 5 significant digits.

<table>
<thead>
<tr>
<th>p</th>
<th>\hat{p}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>(0.0099995, 0.0100005)</td>
</tr>
<tr>
<td>0.1</td>
<td>(0.099995, 0.100005)</td>
</tr>
<tr>
<td>1</td>
<td>(0.99995, 1.00005)</td>
</tr>
<tr>
<td>10</td>
<td>(9.9995, 10.0005)</td>
</tr>
<tr>
<td>100</td>
<td>(99.995, 100.005)</td>
</tr>
<tr>
<td>1000</td>
<td>(999.95, 1000.05)</td>
</tr>
</tbody>
</table>
Chopping and Relative Error

\[
\left| \frac{x - fl(x)}{x} \right| = \left| \frac{0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n - 0.d_1 d_2 \ldots d_{k-1} d_k \times 10^n}{0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n} \right|
\]

\[
= \left| \frac{0.d_{k+1} \ldots \times 10^{n-k}}{0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots \times 10^n} \right|
\]

\[
= \left| \frac{0.d_{k+1} \ldots}{0.d_1 d_2 \ldots d_{k-1} d_k d_{k+1} \ldots} \right| \times 10^{-k}
\]

\[
\leq 10 \times 10^{-k} = 10^{-k+1}
\]
The performance of basic arithmetic operations on a computing device also results in approximations.

We will define the following machine arithmetic operations:

\[
\begin{align*}
x \oplus y &= \text{fl}(\text{fl}(x) + \text{fl}(y)) \\
x \ominus y &= \text{fl}(\text{fl}(x) - \text{fl}(y)) \\
x \otimes y &= \text{fl}(\text{fl}(x) \times \text{fl}(y)) \\
x \odot y &= \text{fl}(\text{fl}(x) \div \text{fl}(y))
\end{align*}
\]
Example

Using 5-digit chopping arithmetic with \(x = \frac{2}{3} \) and \(y = \frac{3}{7} \), compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \oplus y)</td>
<td>0.10952 \times 10^1</td>
<td>0.23</td>
<td>5.283 \times 10^{-1}</td>
<td>0.023</td>
</tr>
<tr>
<td>(x \ominus y)</td>
<td>0.80952 \times 10^0</td>
<td>0.23</td>
<td>5.283 \times 10^{-1}</td>
<td>0.023</td>
</tr>
<tr>
<td>(x \otimes y)</td>
<td>0.47826 \times 10^1</td>
<td>0.3</td>
<td>4.783 \times 10^{-1}</td>
<td>0.014</td>
</tr>
<tr>
<td>(x \oslash y)</td>
<td>0.23809 \times 10^0</td>
<td>0.5</td>
<td>1.371 \times 10^{-1}</td>
<td>0.026</td>
</tr>
<tr>
<td>(x \cratch y)</td>
<td>0.28571 \times 10^1</td>
<td>0.5</td>
<td>1.371 \times 10^{-1}</td>
<td>0.026</td>
</tr>
<tr>
<td>(x \div y)</td>
<td>0.15555 \times 10^1</td>
<td>1.14</td>
<td>1.144 \times 10^{-1}</td>
<td>0.096</td>
</tr>
</tbody>
</table>

Remark: the relative errors are small, so the machines results can be trusted in these cases.
Example

Using 5-digit chopping arithmetic with \(x = \frac{2}{3} \) and \(y = \frac{3}{7} \), compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \oplus y)</td>
<td>(0.10952 \times 10^{1})</td>
<td>(\frac{23}{21})</td>
<td>(3.80952 \times 10^{-5})</td>
<td>(3.47826 \times 10^{-5})</td>
</tr>
<tr>
<td>(x \ominus y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x \otimes y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x \oslash y)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark: the relative errors are small, so the machines results can be trusted in these cases.
Using 5-digit chopping arithmetic with $x = 2/3$ and $y = 3/7$, compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \oplus y$</td>
<td>0.10952×10^1</td>
<td>$\frac{23}{21}$</td>
<td>3.80952×10^{-5}</td>
<td>3.47826×10^{-5}</td>
</tr>
<tr>
<td>$x \ominus y$</td>
<td>0.23809×10^0</td>
<td>$\frac{5}{21}$</td>
<td>5.2381×10^{-6}</td>
<td>2.2×10^{-5}</td>
</tr>
<tr>
<td>$x \otimes y$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$x \oslash y$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Using 5-digit chopping arithmetic with $x = 2/3$ and $y = 3/7$, compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \oplus y$</td>
<td>0.10952×10^1</td>
<td>$\frac{23}{21}$</td>
<td>3.80952×10^{-5}</td>
<td>3.47826×10^{-5}</td>
</tr>
<tr>
<td>$x \ominus y$</td>
<td>0.23809×10^0</td>
<td>$\frac{5}{21}$</td>
<td>5.2381×10^{-6}</td>
<td>2.2×10^{-5}</td>
</tr>
<tr>
<td>$x \otimes y$</td>
<td>0.28571×10^0</td>
<td>$\frac{4}{7}$</td>
<td>4.28571×10^{-6}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>$x \oslash y$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark: the relative errors are small, so the machines results can be trusted in these cases.
Example

Using 5-digit chopping arithmetic with $x = \frac{2}{3}$ and $y = \frac{3}{7}$, compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \oplus y$</td>
<td>0.10952×10^1</td>
<td>$\frac{23}{21}$</td>
<td>3.80952×10^{-5}</td>
<td>3.47826×10^{-5}</td>
</tr>
<tr>
<td>$x \ominus y$</td>
<td>0.23809×10^0</td>
<td>$\frac{5}{21}$</td>
<td>5.2381×10^{-6}</td>
<td>2.2×10^{-5}</td>
</tr>
<tr>
<td>$x \otimes y$</td>
<td>0.28571×10^0</td>
<td>$\frac{2}{7}$</td>
<td>4.28571×10^{-6}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>$x \oslash y$</td>
<td>0.15555×10^1</td>
<td>$\frac{14}{9}$</td>
<td>5.55556×10^{-5}</td>
<td>3.57143×10^{-5}</td>
</tr>
</tbody>
</table>

Remark: the relative errors are small, so the machines results can be trusted in these cases.
Example

Using 5-digit chopping arithmetic with $x = 2/3$ and $y = 3/7$, compute the following quantities and the errors involved in their calculation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \oplus y$</td>
<td>0.10952×10^1</td>
<td>$\frac{23}{21}$</td>
<td>3.80952×10^{-5}</td>
<td>3.47826×10^{-5}</td>
</tr>
<tr>
<td>$x \ominus y$</td>
<td>0.23809×10^0</td>
<td>$\frac{5}{21}$</td>
<td>5.2381×10^{-6}</td>
<td>2.2×10^{-5}</td>
</tr>
<tr>
<td>$x \otimes y$</td>
<td>0.28571×10^0</td>
<td>$\frac{7}{4}$</td>
<td>4.28571×10^{-6}</td>
<td>1.5×10^{-5}</td>
</tr>
<tr>
<td>$x \oslash y$</td>
<td>0.15555×10^1</td>
<td>$\frac{14}{9}$</td>
<td>5.55556×10^{-5}</td>
<td>3.57143×10^{-5}</td>
</tr>
</tbody>
</table>

Remark: the relative errors are small, so the machines results can be trusted in these cases.
Example

Suppose $y = 3/7$, $v = 0.428551$, and $w = 0.123 \times 10^{-4}$. Using 5-digit chopping arithmetic compute the following results and the associated errors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \ominus v$</td>
<td>0.204286</td>
<td>0.2042851</td>
<td>0</td>
<td>0.000004</td>
</tr>
<tr>
<td>$(y \ominus v) \ominus w$</td>
<td>0.16261</td>
<td>0.1626086</td>
<td>0.000004</td>
<td>0.000024</td>
</tr>
</tbody>
</table>

Remark: in this example the subtraction of nearly equal quantities leads to larger relative errors.
Example

Suppose $y = 3/7$, $v = 0.428551$, and $w = 0.123 \times 10^{-4}$. Using 5-digit chopping arithmetic compute the following results and the associated errors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \ominus v$</td>
<td>0.2×10^{-4}</td>
<td>0.204286×10^{-4}</td>
<td>4.286×10^{-7}</td>
<td>2.09804×10^{-2}</td>
</tr>
<tr>
<td>$(y \ominus v) \ominus w$</td>
<td>0.1626×10^{-4}</td>
<td>0.166086×10^{-4}</td>
<td>0.486×10^{-7}</td>
<td>2.09891×10^{-2}</td>
</tr>
</tbody>
</table>

Remark: in this example the subtraction of nearly equal quantities leads to larger relative errors.
Example

Suppose $y = 3/7$, $v = 0.428551$, and $w = 0.123 \times 10^{-4}$. Using 5-digit chopping arithmetic compute the following results and the associated errors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \oplus v$</td>
<td>0.2×10^{-4}</td>
<td>0.204286×10^{-4}</td>
<td>4.286×10^{-7}</td>
<td>2.09804×10^{-2}</td>
</tr>
<tr>
<td>$(y \oplus v) \ominus w$</td>
<td>0.1626×10^1</td>
<td>0.166086×10^1</td>
<td>3.486×10^{-2}</td>
<td>2.09891×10^{-2}</td>
</tr>
</tbody>
</table>

Remark: In this example the subtraction of nearly equal quantities leads to larger relative errors.
Example

Suppose $y = 3/7$, $v = 0.428551$, and $w = 0.123 \times 10^{-4}$. Using 5-digit chopping arithmetic compute the following results and the associated errors.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$y \ominus v$</td>
<td>0.2×10^{-4}</td>
<td>0.204286×10^{-4}</td>
<td>4.286×10^{-7}</td>
<td>2.09804×10^{-2}</td>
</tr>
<tr>
<td>$(y \ominus v) \ominus w$</td>
<td>0.1626×10^1</td>
<td>0.166086×10^1</td>
<td>3.486×10^{-2}</td>
<td>2.09891×10^{-2}</td>
</tr>
</tbody>
</table>

Remark: in this example the subtraction of nearly equal quantities leads to larger relative errors.
Subtraction of Nearly Equal Quantities

Suppose \(x > y \) and the \(k \)-digit representations of \(x \) and \(y \) are respectively

\[
fl(x) = 0.d_1d_2\ldots d_0a_{p+1}a_{p+2}\ldots a_k \times 10^n \\
fl(y) = 0.d_1d_2\ldots d_0b_{p+1}b_{p+2}\ldots b_k \times 10^n.
\]
Subtraction of Nearly Equal Quantities

Suppose \(x > y \) and the \(k \)-digit representations of \(x \) and \(y \) are respectively

\[
\text{fl}(x) = 0.d_1d_2\ldots d_p a_{p+1}a_{p+2}\ldots a_k \times 10^n
\]
\[
\text{fl}(y) = 0.d_1d_2\ldots d_p b_{p+1}b_{p+2}\ldots b_k \times 10^n.
\]

Since the first \(p \) decimal digits of \(x \) and \(y \) are the same, then

\[
x \ominus y = 0.c_{p+1}c_{p+2}\ldots c_k \times 10^{n-p}
\]

where

\[
0.c_{p+1}c_{p+2}\ldots c_k = 0.a_{p+1}a_{p+2}\ldots a_k - 0.b_{p+1}b_{p+2}\ldots b_k.
\]
Subtraction of Nearly Equal Quantities

Suppose \(x > y \) and the \(k \)-digit representations of \(x \) and \(y \) are respectively

\[
fl(x) = 0.d_1d_2 \ldots d_pa_{p+1}a_{p+2} \ldots a_k \times 10^n
\]
\[
fl(y) = 0.d_1d_2 \ldots d_pb_{p+1}b_{p+2} \ldots b_k \times 10^n.
\]

Since the first \(p \) decimal digits of \(x \) and \(y \) are the same, then

\[
x \ominus y = 0.c_{p+1}c_{p+2} \ldots c_k \times 10^{n-p}
\]

where

\[
0.c_{p+1}c_{p+2} \ldots c_k = 0.a_{p+1}a_{p+2} \ldots a_k - 0.b_{p+1}b_{p+2} \ldots b_k.
\]

Remark: the result \(x \ominus y \) has at most \(k \) digits of significance.
Subtraction of Nearly Equal Quantities

Suppose $x > y$ and the k-digit representations of x and y are respectively

$$fl(x) = 0.d_1d_2 \ldots d_pa_{p+1}a_{p+2} \ldots a_k \times 10^n$$

$$fl(y) = 0.d_1d_2 \ldots d_pb_{p+1}b_{p+2} \ldots b_k \times 10^n.$$

Since the first p decimal digits of x and y are the same, then

$$x \ominus y = 0.c_{p+1}c_{p+2} \ldots c_k \times 10^{n-p}$$

where

$$0.c_{p+1}c_{p+2} \ldots c_k = 0.a_{p+1}a_{p+2} \ldots a_k - 0.b_{p+1}b_{p+2} \ldots b_k.$$

Remark: the result $x \ominus y$ has at most $k - p$ digits of significance.
Subtraction of Nearly Equal Quantities

Suppose \(x > y \) and the \(k \)-digit representations of \(x \) and \(y \) are respectively

\[
fl(x) = 0.d_1d_2 \ldots d_p a_{p+1} a_{p+2} \ldots a_k \times 10^n
\]
\[
fl(y) = 0.d_1d_2 \ldots d_p b_{p+1} b_{p+2} \ldots b_k \times 10^n.
\]

Since the first \(p \) decimal digits of \(x \) and \(y \) are the same, then

\[
x \ominus y = 0.c_{p+1} c_{p+2} \ldots c_k \times 10^{n-p}
\]

where

\[
0.c_{p+1} c_{p+2} \ldots c_k = 0.a_{p+1} a_{p+2} \ldots a_k - 0.b_{p+1} b_{p+2} \ldots b_k.
\]

Remark: the result \(x \ominus y \) has at most \(k - p \) digits of significance.

Any further calculations with \(x \ominus y \) will inherit only \(k - p \) digits of significance.
Use 4-digit rounding arithmetic to solve the following quadratic equation.

\[x^2 - 64.2x + 1 = 0 \]
Use 4-digit rounding arithmetic to solve the following quadratic equation.

\[x^2 - 64.2x + 1 = 0 \]

If we solve the equation exactly we see that

\[x_1 \approx 0.0155801 \quad \text{and} \quad x_2 \approx 64.1844. \]
Extended Example (2 of 5)

\[x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

\[= \frac{-b - \sqrt{(0.6420 \times 10^2)^2 - (0.4000 \times 10^1)(0.1000 \times 10^1)(0.1000 \times 10^1)}}{2a} \]

\[= \frac{-b - \sqrt{0.4122 \times 10^4 - 0.4000 \times 10^1}}{2a} \]

\[= \frac{-b - \sqrt{0.4118 \times 10^4}}{2a} \]

\[= \frac{0.6420 \times 10^2 - 0.6417 \times 10^2}{2a} \]

\[= 0.3000 \times 10^{-1} \]

\[= \frac{0.2000 \times 10^1}{0.1500 \times 10^{-1}} \]
Absolute Error:

\[|0.0155801 - 0.015| = 0.0005801 \]

Relative Error:

\[\frac{|0.0155801 - 0.015|}{|0.0155801|} = 0.0372334 \]
Extended Example (4 of 5)

Suppose now we rationalize the quadratic formula so as to avoid the subtraction of nearly equal quantities.

\[x_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \left(\frac{-b + \sqrt{b^2 - 4ac}}{-b + \sqrt{b^2 - 4ac}} \right) \]

\[= \frac{2c}{-b + \sqrt{b^2 - 4ac}} \]

\[= \frac{0.2000 \times 10^1}{0.6420 \times 10^2 + 0.6417 \times 10^2} \]

\[= \frac{0.2000 \times 10^1}{0.1284 \times 10^3} \]

\[= 0.1558 \times 10^{-1} \]
Extended Example (5 of 5)

Absolute Error:

\[|0.0155801 - 0.01558| = 10^{-7} \]

Relative Error:

\[\frac{|0.0155801 - 0.01558|}{|0.0155801|} = 6.41844 \times 10^{-6} \]
Re-arrangement of Calculations

In addition to avoiding the subtraction of nearly equal results in calculations, it is generally a good idea to reduce the number of operations performed to obtain a desired result.

Example
Evaluate the polynomial $p = x^3 - 5x^2 + 3x - 2.7$ at $x = 7.14$ using 3-digit arithmetic.

For the sake of comparison, the exact value is $p = 90.1907$.
Re-arrangement of Calculations

In addition to avoiding the subtraction of nearly equal results in calculations, it is generally a good idea to reduce the number of operations performed to obtain a desired result.

Example
Evaluate the polynomial

\[p(x) = x^3 - 5.9x^2 + 3.4x + 2.7 \]

at \(x = 7.14 \) using 3-digit arithmetic.
Re-arrangement of Calculations

In addition to avoiding the subtraction of nearly equal results in calculations, it is generally a good idea to reduce the number of operations performed to obtain a desired result.

Example

Evaluate the polynomial

\[p(x) = x^3 - 5.9x^2 + 3.4x + 2.7 \]

at \(x = 7.14 \) using 3-digit arithmetic.

For the sake of comparison, the exact value is \(p(7.14) = 90.1907 \).
Consider $p(x) = x^3 - 5.9x^2 + 3.4x + 2.7$ and intermediate results obtained using 3-digit chopping and 3-digit rounding arithmetic.
Consider \(p(x) = x^3 - 5.9x^2 + 3.4x + 2.7 \) and intermediate results obtained using 3-digit chopping and 3-digit rounding arithmetic.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x^2)</th>
<th>(x^3)</th>
<th>(5.9x^2)</th>
<th>(3.4x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chopping</td>
<td>0.714E01</td>
<td>0.509E02</td>
<td>0.363E03</td>
<td>0.300E03</td>
</tr>
<tr>
<td>Rounding</td>
<td>0.714E01</td>
<td>0.510E02</td>
<td>0.364E03</td>
<td>0.301E03</td>
</tr>
</tbody>
</table>
Evaluation (2 of 2)

Chopping:

\[
p(7.14) = 0.899 \times 10^2
\]

Abs. Err. = \[|90.1907 - 89.9| = 0.2907\]

Rel. Err. = \[\frac{|90.1907 - 89.9|}{|90.1907|} = 3.22317 \times 10^{-3}\]

Rounding:

\[
p(7.14) = 0.900 \times 10^2
\]

Abs. Err. = \[|90.1907 - 90.0| = 0.1907\]

Rel. Err. = \[\frac{|90.1907 - 90.0|}{|90.1907|} = 2.11441 \times 10^{-3}\]
Nested Polynomial Form

We may reduce the number of arithmetic operations performed by re-writing the polynomial as

\[p(x) = x^3 - 5.9x^2 + 3.4x + 2.7 \]
\[= x(x(x - 5.9) + 3.4) + 2.7. \]
Nested Polynomial Form

We may reduce the number of arithmetic operations performed by re-writing the polynomial as

\[
p(x) = x^3 - 5.9x^2 + 3.4x + 2.7
\]

\[
= x(x(x - 5.9) + 3.4) + 2.7.
\]

Evaluate \(p(7.14) \) using 3-digit chopping and rounding arithmetic.
Evaluation (Chopping)

\[p(7.14) = 7.14(7.14(7.14 - 5.9) + 3.4) + 2.7 \]
\[= 7.14(7.14(1.24) + 3.4) + 2.7 \]
\[= 7.14(8.85 + 3.4) + 2.7 \]
\[= 7.14(12.2) + 2.7 \]
\[= 87.1 + 2.7 \]
\[= 89.8 \]

Abs. Err. \[= |90.1907 - 89.8| = 0.3907 \]

Rel. Err. \[= \frac{|90.1907 - 89.8|}{90.1907} = 4.33193 \times 10^{-3} \]
Evaluation (Rounding)

\[p(7.14) = 7.14 (7.14(7.14 - 5.9) + 3.4) + 2.7 \]
\[= 7.14 (7.14(1.24) + 3.4) + 2.7 \]
\[= 7.14(8.85 + 3.4) + 2.7 \]
\[= 7.14(12.3) + 2.7 \]
\[= 87.8 + 2.7 \]
\[= 90.5 \]

Abs. Err. \[= |90.1907 - 90.5| = 0.3093 \]

Rel. Err. \[= \frac{|90.1907 - 90.5|}{90.1907} = 3.4294 \times 10^{-3} \]
Homework

- Read Section 1.2.
- Exercises: 1, 3, 5, 7, 11, 13, 19, 21, 25, 28