Richardson’s Extrapolation
MATH 375 Numerical Analysis

J. Robert Buchanan

Department of Mathematics

Spring 2019
Objectives

Recall the centered-difference formula for $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f^{(3)}(z)$$

truncation error

In today’s lesson we will learn to create higher-accuracy approximations while using lower-order formulas.

The technique, known as **extrapolation** can be used whenever the truncation error has a predictable form (as above) and depends on a parameter such as h, the step size.
General Setting

Suppose that $N_1(h)$ is a formula which approximates a quantity M.

$$N_1(h) \approx M$$
Suppose that $N_1(h)$ is a formula which approximates a quantity M.

$$N_1(h) \approx M$$

Imagine the truncation error of this approximation can be written as

$$M - N_1(h) = K_1 h + K_2 h^2 + K_3 h^3 + \cdots$$

for some unknown constants K_1, K_2, K_3, \ldots.
General Setting

Suppose that \(N_1(h)\) is a formula which approximates a quantity \(M\).

\[N_1(h) \approx M \]

Imagine the truncation error of this approximation can be written as

\[M - N_1(h) = K_1 h + K_2 h^2 + K_3 h^3 + \cdots \]

for some unknown constants \(K_1, K_2, K_3, \ldots\).

Note that

\[
\begin{align*}
M - N_1(0.1) &= K_1(0.1) + K_2(0.1)^2 + \cdots \approx (0.1)K_1 \\
M - N_1(0.01) &= K_1(0.01) + K_2(0.01)^2 + \cdots \approx (0.01)K_1
\end{align*}
\]

and in general \(M - N_1(h) \approx K_1 h\).
Order of the Truncation Error

Question: Since the truncation error is $O(h)$, can we combine several $O(h)$ approximations to create an $O(h^n)$ approximation where $n \geq 2$?
Order of the Truncation Error

Question: Since the truncation error is $O(h)$, can we combine several $O(h)$ approximations to create an $O(h^n)$ approximation where $n \geq 2$?

\[
M = N_1(h) + K_1 h + K_2 h^2 + K_3 h^3 + \cdots
\]

\[
M = N_1 \left(\frac{h}{2} \right) + K_1 \frac{h}{2} + K_2 \frac{h^2}{4} + K_3 \frac{h^3}{8} + \cdots
\]
Order of the Truncation Error

Question: Since the truncation error is $O(h)$, can we combine several $O(h)$ approximations to create an $O(h^n)$ approximation where $n \geq 2$?

\[
M = N_1(h) + K_1 h + K_2 h^2 + K_3 h^3 + \cdots
\]

\[
M = N_1 \left(\frac{h}{2} \right) + K_1 \frac{h}{2} + K_2 \frac{h^2}{4} + K_3 \frac{h^3}{8} + \cdots
\]

Multiply the 2nd equation by 2 and subtract the 1st equation.

\[
M = 2N_1 \left(\frac{h}{2} \right) - N_1(h) + K_2 \left[\frac{h^2}{2} - h^2 \right] + K_3 \left[\frac{h^3}{4} - h^3 \right] + \cdots
\]

\[
= N_1 \left(\frac{h}{2} \right) + \left[N_1 \left(\frac{h}{2} \right) - N_1(h) \right] - \frac{K_2}{2} h^2 - \frac{3K_3}{4} h^3 - \cdots
\]

Note: the $O(h)$ truncation terms have vanished.
A Second Approximation

Define $N_2(h) = N_1 \left(\frac{h}{2} \right) + \left[N_1 \left(\frac{h}{2} \right) - N_1(h) \right]$ and then we have

$$M = N_2(h) - \frac{K_2}{2} h^2 - \frac{3K_3}{4} h^3 - \ldots$$

which has $O(h^2)$ truncation error.

Note: we have combined multiple $O(h)$ approximations to generate an $O(h^2)$ approximation.
Example

Recall the 2-point forward-difference formula for $f'(x_0)$:

$$f'(x_0) = \frac{1}{h}(f(x_0 + h) - f(x_0)) - \frac{f''(z)}{2}h$$

This is an $O(h)$ truncation error.
Example

Recall the 2-point forward-difference formula for \(f'(x_0) \):

\[
f'(x_0) = \frac{1}{h} (f(x_0 + h) - f(x_0)) - \frac{f''(z)}{2} h
\]

This is an \(O(h) \) truncation error.

Let \(f(x) = x \sin x \) then we have:

<table>
<thead>
<tr>
<th>(h)</th>
<th>(f'(1) \approx N_1(h))</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.38857</td>
<td>0.00679782</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38647</td>
<td>0.00469475</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

\[
N_2(0.1) = N_1(0.05) + (N_1(0.05) - N_1(0.1)) = 1.38436
\]
Example

Recall the 2-point forward-difference formula for \(f'(x_0) \):

\[
f'(x_0) = \frac{1}{h} (f(x_0 + h) - f(x_0)) - \frac{f''(z)}{2} h
\]

This is an \(O(h) \) truncation error.

Let \(f(x) = x \sin x \) then we have:

<table>
<thead>
<tr>
<th>(h)</th>
<th>(f'(1) \approx N_1(h))</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.38857</td>
<td>0.00679782</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38647</td>
<td>0.00469475</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

\[
N_2(0.1) = N_1(0.05) + (N_1(0.05) - N_1(0.1)) = 1.38436
\]

Note that \(|N_2(0.1) - f'(1)| \approx 0.00259168 \).
Use Richardson’s Extrapolation and the 2-point forward difference formula for $f'(x_0)$ to develop an $O(h^2)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \left(N_1(0.05) - N_1(0.1) \right) = -5.30499$$

Note that $|N_2(0.1) - f'(2)| \approx 0.00320877$.

Example
Example

Use Richardson’s Extrapolation and the 2-point forward difference formula for $f'(x_0)$ to develop an $O(h^2)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(2) \approx N_1(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>-5.61784</td>
<td>0.316063</td>
</tr>
<tr>
<td>0.05</td>
<td>-5.46141</td>
<td>0.159636</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + (N_1(0.05) - N_1(0.1)) = -5.30499$$
Example

Use Richardson’s Extrapolation and the 2-point forward difference formula for \(f'(x_0) \) to develop an \(O(h^2) \) approximation to \(f'(2) \) where \(f(x) = x^2 \cos x \) using \(h = 0.1 \).

<table>
<thead>
<tr>
<th>(h)</th>
<th>(f'(2) \approx N_1(h))</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>-5.61784</td>
<td>0.316063</td>
</tr>
<tr>
<td>0.05</td>
<td>-5.46141</td>
<td>0.159636</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

\[
N_2(0.1) = N_1(0.05) + (N_1(0.05) - N_1(0.1)) = -5.30499
\]

Note that \(|N_2(0.1) - f'(2)| \approx 0.00320877 \).
Improving Richardson’s Extrapolation

Remark: If the truncation error contains only even powers of h, the extrapolation is more effective.

Suppose

$$M = N_1(h) + K_1 h^2 + K_2 h^4 + K_3 h^6 + \cdots$$

$$M = N_1 \left(\frac{h}{2} \right) + K_1 \frac{h^2}{4} + K_2 \frac{h^4}{16} + K_3 \frac{h^6}{64} + \cdots$$
Remark: If the truncation error contains only even powers of h, the extrapolation is more effective.

Suppose

\[
M = N_1(h) + K_1 h^2 + K_2 h^4 + K_3 h^6 + \cdots
\]

\[
M = N_1 \left(\frac{h}{2} \right) + K_1 \frac{h^2}{4} + K_2 \frac{h^4}{16} + K_3 \frac{h^6}{64} + \cdots
\]

Multiply the 2nd equation by 4 and subtract the 1st equation.

\[
3M = \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] + K_2 \left[\frac{h^4}{4} - h^4 \right] + K_3 \left[\frac{h^6}{16} - h^6 \right] + \cdots
\]
If we multiply the previous equation by $1/3$ we obtain

\[M = \frac{1}{3} \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] + \frac{K_2}{3} \left[\frac{h^4}{4} - h^4 \right] + \frac{K_3}{3} \left[\frac{h^6}{16} - h^6 \right] + \cdots \]
$O(h^4)$ Truncation Error

If we multiply the previous equation by $1/3$ we obtain

$$M = \frac{1}{3} \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] + \frac{K_2}{3} \left[\frac{h^4}{4} - h^4 \right] + \frac{K_3}{3} \left[\frac{h^6}{16} - h^6 \right] + \cdots$$

Define

$$N_2(h) = \frac{1}{3} \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] = N_1 \left(\frac{h}{2} \right) + \frac{1}{3} \left[N_1 \left(\frac{h}{2} \right) - N_1(h) \right].$$
$O(h^4)$ Truncation Error

If we multiply the previous equation by $1/3$ we obtain

$$M = \frac{1}{3} \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] + \frac{K_2}{3} \left[\frac{h^4}{4} - h^4 \right] + \frac{K_3}{3} \left[\frac{h^6}{16} - h^6 \right] + \cdots$$

Define

$$N_2(h) = \frac{1}{3} \left[4N_1 \left(\frac{h}{2} \right) - N_1(h) \right] = N_1 \left(\frac{h}{2} \right) + \frac{1}{3} \left[N_1 \left(\frac{h}{2} \right) - N_1(h) \right].$$

This is an approximation formula with truncation error $O(h^4)$.

$$M = N_2(h) - \frac{K_2}{4} h^4 - \frac{5K_3}{16} h^6 + \cdots$$
Example

Recall the 3-point centered-difference formula for \(f'(x_0) \):

\[
f'(x_0) = \frac{1}{2h} (f(x_0 + h) - f(x_0 - h)) - \frac{f'''(z)}{6} h^2
\]

This is an \(O(h^2) \) truncation error.
Example

Recall the 3-point centered-difference formula for $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h}(f(x_0 + h) - f(x_0 - h)) - \frac{f'''(z)}{6}h^2$$

This is an $O(h^2)$ truncation error.

Let $f(x) = x \sin x$ then we have:

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(1) \approx N_1(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.37667</td>
<td>0.0051039</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38050</td>
<td>0.0012767</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \frac{1}{3}(N_1(0.05) - N_1(0.1)) = 1.38177$$
Example

Recall the 3-point centered-difference formula for $f'(x_0)$:

$$f'(x_0) = \frac{1}{2h}(f(x_0 + h) - f(x_0 - h)) - \frac{f'''(z)}{6} h^2$$

This is an $O(h^2)$ truncation error.

Let $f(x) = x \sin x$ then we have:

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(1) \approx N_1(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.37667</td>
<td>0.0051039</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38050</td>
<td>0.0012767</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \frac{1}{3}(N_1(0.05) - N_1(0.1)) = 1.38177$$

Note that $|N_2(0.1) - f'(1)| \approx 9.88697 \times 10^{-7}$.
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for $f'(x_0)$ to develop an $O(h^4)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \frac{1}{3} (N_1(0.05) - N_1(0.1)) = -5.30178$$

Note that $|N_2(0.1) - f'(2)| \approx 1.29563 \times 10^{-6}$.
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for $f'(x_0)$ to develop an $O(h^4)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(2) \approx N_1(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>-5.29648</td>
<td>0.00529713</td>
</tr>
<tr>
<td>0.05</td>
<td>-5.30045</td>
<td>0.00132331</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \frac{1}{3}(N_1(0.05) - N_1(0.1)) = -5.30178$$
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for $f'(x_0)$ to develop an $O(h^4)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(2) \approx N_1(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>-5.29648</td>
<td>0.00529713</td>
</tr>
<tr>
<td>0.05</td>
<td>-5.30045</td>
<td>0.00132331</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_2(0.1) = N_1(0.05) + \frac{1}{3}(N_1(0.05) - N_1(0.1)) = -5.30178$$

Note that $|N_2(0.1) - f'(2)| \approx 1.29563 \times 10^{-6}$.
Return to the $O(h^4)$ Formula

Recall:

$$M = N_2(h) - \frac{K_2}{4} h^4 - \frac{5K_3}{16} h^6 + \cdots$$
Return to the $O(h^4)$ Formula

Recall:

$$M = N_2(h) - \frac{K_2}{4} h^4 - \frac{5K_3}{16} h^6 + \cdots$$

Replace h by $h/2$:

$$M = N_2 \left(\frac{h}{2} \right) - \frac{K_2}{64} h^4 - \frac{5K_3}{1024} h^6 + \cdots$$

which is also has an $O(h^4)$ truncation error.
Return to the \(O(h^4) \) Formula

Recall:

\[
M = N_2(h) - \frac{K_2}{4} h^4 - \frac{5K_3}{16} h^6 + \cdots
\]

Replace \(h \) by \(h/2 \):

\[
M = N_2 \left(\frac{h}{2} \right) - \frac{K_2}{64} h^4 - \frac{5K_3}{1024} h^6 + \cdots
\]

which is also has an \(O(h^4) \) truncation error.

Multiply the 2nd equation by 16 and subtract the first equation from it.

\[
15M = \left[16N_2 \left(\frac{h}{2} \right) - N_2(h) \right] + \frac{15K_3}{64} h^6 + \cdots
\]
$O(h^6)$ Truncation Error

Multiplying both sides of the last equation by $1/15$ yields:

$$M = \frac{1}{15} \left[16N_2 \left(\frac{h}{2} \right) - N_2(h) \right] + \frac{K_3}{64} h^6 + \cdots$$
Multiplying both sides of the last equation by $1/15$ yields:

$$M = \frac{1}{15} \left[16N_2 \left(\frac{h}{2} \right) - N_2(h) \right] + \frac{K_3}{64}h^6 + \cdots$$

We can define

$$N_3(h) = N_2 \left(\frac{h}{2} \right) + \frac{1}{15} \left[N_2 \left(\frac{h}{2} \right) - N_2(h) \right].$$

This approximation formula has an $O(h^6)$ truncation error.
Example

We will use two approximations to $f'(1)$ where $f(x) = x \sin x$ with $O(h^4)$ truncation errors to develop an approximation with $O(h^6)$ truncation error.
Example

We will use two approximations to $f'(1)$ where $f(x) = x \sin x$ with $O(h^4)$ truncation errors to develop an approximation with $O(h^6)$ truncation error.

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(1) \approx N_2(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.38177</td>
<td>9.88697×10^{-7}</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38177</td>
<td>6.18122×10^{-8}</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_3(0.1) = N_2(0.05) + \frac{1}{15}(N_2(0.05) - N_2(0.1)) = 1.38177$$
Example

We will use two approximations to \(f'(1) \) where \(f(x) = x \sin x \) with \(O(h^4) \) truncation errors to develop an approximation with \(O(h^6) \) truncation error.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(f'(1) \approx N_2(h))</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.38177</td>
<td>(9.88697 \times 10^{-7})</td>
</tr>
<tr>
<td>0.05</td>
<td>1.38177</td>
<td>(6.18122 \times 10^{-8})</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

\[
N_3(0.1) = N_2(0.05) + \frac{1}{15} (N_2(0.05) - N_2(0.1)) = 1.38177
\]

Note that \(|N_3(0.1) - f'(1)| \approx 1.99358 \times 10^{-11} \).
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for $f'(x_0)$ to develop an $O(h^6)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

Applying the extrapolation formula gives us another approximation:

$N_3(0.1) = N_2(0.05) + \frac{1}{15}(N_2(0.05) - N_2(0.1)) = -5.30178$

Note that $|N_3(0.1) - f'(2)| \approx 7.09512 \times 10^{-11}$.

\[
\begin{align*}
N_2(0.05) & \approx N_2(0.1) \\
N_3(0.1) & \approx N_2(0.05) + \frac{1}{15}(N_2(0.05) - N_2(0.1)) = -5.30178 \\
\end{align*}
\]
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for $f'(x_0)$ to develop an $O(h^6)$ approximation to $f'(2)$ where $f(x) = x^2 \cos x$ using $h = 0.1$.

<table>
<thead>
<tr>
<th>h</th>
<th>$f'(2) \approx N_2(h)$</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>-5.30178</td>
<td>1.29563×10^{-6}</td>
</tr>
<tr>
<td>0.05</td>
<td>-5.30178</td>
<td>8.10432×10^{-8}</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

$$N_3(0.1) = N_2(0.05) + \frac{1}{15}(N_2(0.05) - N_2(0.1)) = -5.30178$$
Example

Use Richardson’s Extrapolation and the 3-point centered-difference formula for \(f'(x_0) \) to develop an \(O(h^6) \) approximation to \(f'(2) \) where \(f(x) = x^2 \cos x \) using \(h = 0.1 \).

<table>
<thead>
<tr>
<th>(h)</th>
<th>(f'(2) \approx N_2(h))</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>−5.30178</td>
<td>(1.29563 \times 10^{-6})</td>
</tr>
<tr>
<td>0.05</td>
<td>−5.30178</td>
<td>(8.10432 \times 10^{-8})</td>
</tr>
</tbody>
</table>

Applying the extrapolation formula gives us another approximation:

\[
N_3(0.1) = N_2(0.05) + \frac{1}{15}(N_2(0.05) - N_2(0.1)) = −5.30178
\]

Note that \(|N_3(0.1) - f'(2)| \approx 7.09512 \times 10^{-11} \).
For $j = 2, 3, \ldots$ the $O(h^{2j})$ truncation error approximation is given by the formula

$$N_j(h) = N_{j-1} \left(\frac{h}{2} \right) + \frac{1}{4^{j-1} - 1} \left[N_{j-1} \left(\frac{h}{2} \right) - N_{j-1}(h) \right].$$
General Situation

For $j = 2, 3, \ldots$ the $O(h^{2^j})$ truncation error approximation is given by the formula

$$N_j(h) = N_{j-1} \left(\frac{h}{2} \right) + \frac{1}{4^{j-1} - 1} \left[N_{j-1} \left(\frac{h}{2} \right) - N_{j-1}(h) \right].$$

For $j = 2, 3, \ldots$ the $O(h^j)$ truncation error approximation is given by the formula

$$N_j(h) = N_{j-1} \left(\frac{h}{2} \right) + \frac{1}{2^{j-1} - 1} \left[N_{j-1} \left(\frac{h}{2} \right) - N_{j-1}(h) \right].$$
Remark: Richardson’s extrapolation provides a convenient means for developing the 5-point approximations to $f'(x_0)$.

Assuming $f \in C^5[a, b]$ and $x_0 \in (a, b)$ expand $f(x)$ as a degree 4 Taylor polynomial about x_0.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2} f''(x_0)(x - x_0)^2$$
$$+ \frac{1}{6} f'''(x_0)(x - x_0)^3 + \frac{1}{24} f^{(4)}(x_0)(x - x_0)^4$$
$$+ \frac{1}{120} f^{(5)}(z)(x - x_0)^5$$

where z lies between x and x_0.

Multi-point Differentiation Formulas
Evaluate the Taylor polynomial expansion at $x = x_0 \pm h$.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(x_0)h^4 + \frac{1}{120}f^{(5)}(z_1)h^5$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(x_0)h^4 - \frac{1}{120}f^{(5)}(z_2)h^5$$

with $x_0 - h \leq z_2 \leq x_0 \leq z_1 \leq x_0 + h$.

Now subtract the 2nd equation from the 1st equation.
Evaluate the Taylor polynomial expansion at $x = x_0 \pm h$.

$$f(x_0 + h) = f(x_0) + f'(x_0)h + \frac{1}{2}f''(x_0)h^2 + \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(x_0)h^4 + \frac{1}{120}f^{(5)}(z_1)h^5$$

$$f(x_0 - h) = f(x_0) - f'(x_0)h + \frac{1}{2}f''(x_0)h^2 - \frac{1}{6}f'''(x_0)h^3 + \frac{1}{24}f^{(4)}(x_0)h^4 - \frac{1}{120}f^{(5)}(z_2)h^5$$

with $x_0 - h \leq z_2 \leq x_0 \leq z_1 \leq x_0 + h$.

Now subtract the 2nd equation from the 1st equation.
Five-Point Formula (2 of 5)

\[f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3} f''''(x_0) + \frac{h^5}{120} \left[f^{(5)}(z_1) + f^{(5)}(z_2) \right] \]
Five-Point Formula (2 of 5)

\[f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3} f'''(x_0) + \frac{h^5}{120} \left[f^{(5)}(z_1) + f^{(5)}(z_2) \right] \]

By assuming that \(f \in C^5[a, b] \) we know \(f^{(5)}(x) \) is continuous on \([a, b]\).

Note that

\[\frac{1}{2} \left[f^{(5)}(z_1) + f^{(5)}(z_2) \right] \]

lies between \(f^{(5)}(z_1) \) and \(f^{(5)}(z_2) \).
Five-Point Formula (2 of 5)

\[f(x_0+h) - f(x_0-h) = 2hf'(x_0) + \frac{h^3}{3}f'''(x_0) + \frac{h^5}{120} \left[f^{(5)}(z_1) + f^{(5)}(z_2) \right] \]

By assuming that \(f \in C^5[a, b] \) we know \(f^{(5)}(x) \) is continuous on \([a, b]\).

Note that

\[\frac{1}{2} \left[f^{(5)}(Z_1) + f^{(5)}(Z_2) \right] \]

lies between \(f^{(5)}(Z_1) \) and \(f^{(5)}(Z_2) \).

According to the Intermediate Value Theorem there exists \(w \) between \(z_1 \) and \(z_2 \) for which

\[
 f^{(5)}(w) = \frac{1}{2} \left[f^{(5)}(z_1) + f^{(5)}(z_2) \right] \\
 2f^{(5)}(w) = f^{(5)}(z_1) + f^{(5)}(z_2)
\]
Thus we may write the Taylor polynomial difference as

\[f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3}f'''(x_0) + \frac{h^5}{60}f^{(5)}(w) \]

for some \(x_0 - h \leq w \leq x_0 + h \).

Solve this equation for \(f'(x_0) \).
Thus we may write the Taylor polynomial difference as

\[f(x_0 + h) - f(x_0 - h) = 2hf'(x_0) + \frac{h^3}{3}f'''(x_0) + \frac{h^5}{60}f^{(5)}(w) \]

for some \(x_0 - h \leq w \leq x_0 + h \).

Solve this equation for \(f'(x_0) \).

\[f'(x_0) = \frac{1}{2h} \left[f(x_0 + h) - f(x_0 - h) \right] - \frac{h^2}{6}f'''(x_0) - \frac{h^4}{120}f^{(5)}(w) \]

Now apply the Richardson’s extrapolation technique to this approximation.
Five-Point Formula (4 of 5)

\[f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f^{(5)}(w) \]

If we replace \(h \) by \(2h \) we get

\[f'(x_0) = \frac{1}{4h} [f(x_0 + 2h) - f(x_0 - 2h)] - \frac{4h^2}{6} f'''(x_0) - \frac{16h^4}{120} f^{(5)}(\tilde{w}) \]

where \(\tilde{w} \) lies between \(x_0 - 2h \) and \(x_0 + 2h \).
Five-Point Formula (4 of 5)

\[f'(x_0) = \frac{1}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{h^2}{6} f'''(x_0) - \frac{h^4}{120} f^{(5)}(w) \]

If we replace \(h \) by \(2h \) we get

\[f'(x_0) = \frac{1}{4h} [f(x_0 + 2h) - f(x_0 - 2h)] - \frac{4h^2}{6} f'''(x_0) - \frac{16h^4}{120} f^{(5)}(\tilde{w}) \]

where \(\tilde{w} \) lies between \(x_0 - 2h \) and \(x_0 + 2h \).

Multiply the 1st equation by 4:

\[4f'(x_0) = \frac{4}{2h} [f(x_0 + h) - f(x_0 - h)] - \frac{4h^2}{6} f'''(x_0) - \frac{4h^4}{120} f^{(5)}(w) \]

and subtract the 2nd equation.
Five-Point Formula (5 of 5)

\[3f'(x_0) = \frac{2}{h} [f(x_0 + h) - f(x_0 - h)] - \frac{1}{4h} [f(x_0 + 2h) - f(x_0 - 2h)] \]
\[\quad - \frac{4h^4}{120} f^{(5)}(w) + \frac{16h^4}{120} f^{(5)}(\tilde{w}) \]

\[f'(x_0) = \frac{2}{3h} [f(x_0 + h) - f(x_0 - h)] - \frac{1}{12h} [f(x_0 + 2h) - f(x_0 - 2h)] \]
\[\quad - \frac{h^4}{90} f^{(5)}(w) + \frac{2h^4}{45} f^{(5)}(\tilde{w}) \]
\[= \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] \]
\[\quad - \frac{h^4}{30} f^{(5)}(\hat{w}) \]

The form of the truncation error has not been justified.
Homework

- Read Section 4.2.
- Exercises: 1a, 7, 9