Absolute Value and the Real Line
MATH 464/506, Real Analysis

J. Robert Buchanan
Department of Mathematics
Summer 2007
Definition
The **absolute value** of a real number \(a \), denoted by \(|a| \), is defined by

\[
|a| = \begin{cases}
 a & \text{if } a > 0, \\
 0 & \text{if } a = 0, \\
 -a & \text{if } a < 0.
\end{cases}
\]

Theorem
1. \(|ab| = |a||b|\) for all \(a, b \in \mathbb{R} \).
2. \(|a|^2 = a^2\) for all \(a \in \mathbb{R} \).
3. If \(c \geq 0 \), then \(|a| \leq c\) if and only if \(-c \leq a \leq c\).
4. \(-|a| \leq a \leq |a|\) for all \(a \in \mathbb{R} \).
Absolute Value

Definition

The **absolute value** of a real number a, denoted by $|a|$, is defined by

$$|a| = \begin{cases}
 a & \text{if } a > 0, \\
 0 & \text{if } a = 0, \\
 -a & \text{if } a < 0.
\end{cases}$$

Theorem

1. $|ab| = |a||b|$ for all $a, b \in \mathbb{R}$.
2. $|a|^2 = a^2$ for all $a \in \mathbb{R}$.
3. If $c \geq 0$, then $|a| \leq c$ if and only if $-c \leq a \leq c$.
4. $-|a| \leq a \leq |a|$ for all $a \in \mathbb{R}$.

Proof.
Definition

The **absolute value** of a real number a, denoted by $|a|$, is defined by

$$|a| = \begin{cases}
 a & \text{if } a > 0, \\
 0 & \text{if } a = 0, \\
 -a & \text{if } a < 0.
\end{cases}$$

Theorem

1. $|ab| = |a||b|$ for all $a, b \in \mathbb{R}$.
2. $|a|^2 = a^2$ for all $a \in \mathbb{R}$.
3. If $c \geq 0$, then $|a| \leq c$ if and only if $-c \leq a \leq c$.
4. $-|a| \leq a \leq |a|$ for all $a \in \mathbb{R}$.

Proof.
Triangle Inequality

Theorem

If $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Proof.

Corollary

If $a, b \in \mathbb{R}$, then

1. $||a| - |b|| \leq |a - b|$,
2. $|a - b| \leq |a| + |b|$.

If a_1, a_2, \ldots, a_n are any real numbers, then

$$|a_1 + a_2 + \ldots + a_n| \leq |a_1| + |a_2| + \ldots + |a_n|.$$
Theorem

If $a, b \in \mathbb{R}$, then $|a + b| \leq |a| + |b|$.

Proof.

Corollary

If $a, b \in \mathbb{R}$, then

1. $||a| - |b|| \leq |a - b|$,
2. $|a - b| \leq |a| + |b|$.

Corollary

If a_1, a_2, \ldots, a_n are any real numbers, then

$$|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| + \cdots + |a_n|.$$
Triangle Inequality

Theorem

If \(a, b \in \mathbb{R} \), then \(|a + b| \leq |a| + |b|\).

Proof.

Corollary

If \(a, b \in \mathbb{R} \), then

1. \(||a| - |b|| \leq |a - b|\),
2. \(|a - b| \leq |a| + |b|\).

Corollary

If \(a_1, a_2, \ldots, a_n \) are any real numbers, then

\(|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| + \cdots + |a_n|\).
Triangle Inequality

Theorem

If \(a, b \in \mathbb{R} \), then \(|a + b| \leq |a| + |b|\).

Proof.

Corollary

If \(a, b \in \mathbb{R} \), then

1. \(|a| - |b| \leq |a - b|\),
2. \(|a - b| \leq |a| + |b|\).

Corollary

If \(a_1, a_2, \ldots, a_n \) are any real numbers, then

\[|a_1 + a_2 + \cdots + a_n| \leq |a_1| + |a_2| + \cdots + |a_n|. \]
Remarks:
- Geometrically we may regard $|a|$ as the distance along the number line from 0 to a.
- The distance between a and b in \mathbb{R} is $|a - b|$.

Definition
Let $a \in \mathbb{R}$ and $\epsilon > 0$. The ϵ-neighborhood of a is the set

$$ V_\epsilon(a) = \{ x \in \mathbb{R} : |x - a| < \epsilon \}. $$

Remark: $x \in V_\epsilon(a)$ means x satisfies the following equivalent inequalities:

$$ -\epsilon < x - a < \epsilon $$
$$ a - \epsilon < x < a + \epsilon $$
Remarks:

- Geometrically we may regard $|a|$ as the distance along the number line from 0 to a.
- The distance between a and b in \mathbb{R} is $|a - b|$.

Definition

Let $a \in \mathbb{R}$ and $\epsilon > 0$. The ϵ-neighborhood of a is the set

$$V_\epsilon(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}.$$

Remark: $x \in V_\epsilon(a)$ means x satisfies the following equivalent inequalities:

$$-\epsilon < x - a < \epsilon$$

$$a - \epsilon < x < a + \epsilon$$
Remarks:

- Geometrically we may regard $|a|$ as the distance along the number line from 0 to a.
- The distance between a and b in \mathbb{R} is $|a - b|$.

Definition

Let $a \in \mathbb{R}$ and $\epsilon > 0$. The ϵ-neighborhood of a is the set

$$V_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\}.$$

Remark: $x \in V_{\epsilon}(a)$ means x satisfies the following equivalent inequalities:

$$-\epsilon < x - a < \epsilon$$

$$a - \epsilon < x < a + \epsilon$$
Theorem

Let \(a \in \mathbb{R} \). If \(x \) belongs to the neighborhood \(V_{\varepsilon}(a) \) for every \(\varepsilon > 0 \), then \(x = a \).

Proof.
Theorem

Let \(a \in \mathbb{R}\). If \(x\) belongs to the neighborhood \(V_\varepsilon(a)\) for every \(\varepsilon > 0\), then \(x = a\).

Proof.
Homework

- Read Section 2.2.
- Page 34: 1, 2, 14, 15

Boxed problems should be written up separately and submitted for grading at class time on Friday.