Algebraic and Order Properties of \mathbb{R}

MATH 464/506, *Real Analysis*

J. Robert Buchanan

Department of Mathematics

Summer 2007
The real number system \(\mathbb{R} \) is a complete ordered field.
On the set \(\mathbb{R} \) there are two **binary operations**, denoted “+” (addition) and “\(\cdot \)” (multiplication), which behave according the following axioms.

Additive Axioms:

(A0) \(\forall x, y \in \mathbb{R}, \exists \) unique element \(x + y \in \mathbb{R} \).

(A1) \(\forall x, y \in \mathbb{R}, x + y = y + x \) (commutativity of +).

(A2) \(\forall x, y, z \in \mathbb{R}, x + (y + z) = (x + y) + z \) (associativity of +).

(A3) \(\exists \) element 0 \(\in \mathbb{R} \) \(\ni \) \(\forall x \in \mathbb{R}, x + 0 = x \) (existence of additive identity element).

(A4) \(\forall x \in \mathbb{R}, \exists u \in \mathbb{R} \) \(\ni x + u = 0 \) (existence of additive inverses).
Multiplicative Axioms:

(M0) \(\forall x, y \in \mathbb{R}, \exists \) unique element \(x \cdot y \in \mathbb{R} \).

(M1) \(\forall x, y \in \mathbb{R}, x \cdot y = y \cdot x \) (commutativity of \(\cdot \)).

(M2) \(\forall x, y, z \in \mathbb{R}, x \cdot (y \cdot z) = (x \cdot y) \cdot z \) (associativity of \(\cdot \)).

(M3) \(\exists \) element \(1 \in \mathbb{R} \) \(\ni 1 \neq 0 \) and \(\forall x \in \mathbb{R}, x \cdot 1 = x \) (existence of multiplicative identity element).

(M4) \(\forall x \in \mathbb{R} \) \(\exists x \neq 0, \exists u \in \mathbb{R} \) \(\ni x \cdot u = 1 \) (existence of multiplicative inverses).

Distributive Axiom:

(D) \(\forall x, y, z \in \mathbb{R}, x \cdot (y + z) = (x \cdot y) + (x \cdot z) \).
Properties of Identity Elements

Theorem

1. If z and a are elements of \mathbb{R} with $z + a = a$, then $z = 0$.
2. If u and $b \neq 0$ are elements of \mathbb{R} with $u \cdot b = b$, then $u = 1$.
3. If $a \in \mathbb{R}$, then $a \cdot 0 = 0$.

J. Robert Buchanan
Algebraic and Order Properties of \mathbb{R}
Properties of Identity Elements

Theorem

1. If \(z \) and \(a \) are elements of \(\mathbb{R} \) with \(z + a = a \), then \(z = 0 \).
2. If \(u \) and \(b \neq 0 \) are elements of \(\mathbb{R} \) with \(u \cdot b = b \), then \(u = 1 \).
3. If \(a \in \mathbb{R} \), then \(a \cdot 0 = 0 \).

Proof.
Further Properties of Multiplication

Theorem

(Uniqueness of Reciprocals) If $a \neq 0$ and $b \in \mathbb{R}$ are such that $a \cdot b = 1$, then $b = 1/a$.

(Zero Factor Property) If $a \cdot b = 0$, then either $a = 0$ or $b = 0$.
Further Properties of Multiplication

Theorem

Uniqueness of Reciprocals If \(a \neq 0 \) and \(b \in \mathbb{R} \) are such that \(a \cdot b = 1 \), then \(b = 1/a \).

Zero Factor Property If \(a \cdot b = 0 \), then either \(a = 0 \) or \(b = 0 \).

Proof.
Further Operations

Definition

(Subtraction) \(\forall x, y \in \mathbb{R}, \text{ define } x - y = x + (-y). \)

(Division) \(\forall x, y \in \mathbb{R}, \text{ if } y \neq 0 \text{ define } x \div y = x \cdot (1/y). \)

(Exponentiation) \(\forall x \in \mathbb{R} \text{ and } n \in \mathbb{N}, x^n = \underbrace{x \cdot x \cdots x}_{n \text{ factors}}. \)

\(\forall x \in \mathbb{R} \text{ with } x \neq 0 \text{ and } n \in \mathbb{N}, x^{-n} = (1/x)^n. \)

\(\forall x \in \mathbb{R} \text{ with } x \neq 0, x^0 = 1. \)
Theorem

There does not exist a rational number \(r \) such that \(r^2 = 2 \).
Theorem

There does not exist a rational number \(r \) such that \(r^2 = 2 \).

Proof.
Order Axioms:

There is a nonempty subset P of \mathbb{R}, called the set of positive real numbers, that possess the following properties:

1. $\forall x, y \in P, \ x + y \in P$ (closure under $+$).
2. $\forall x, y \in P, \ x \cdot y \in P$ (closure under \cdot).
3. $\forall x \in \mathbb{R}$, one and only one of the following holds (trichotomy):

 $$x \in P, \quad -x \in P, \quad x = 0.$$
If \(a \in \mathbb{P} \) then \(a > 0 \) and we say \(a \) is **positive** or **strictly positive**.

If \(a \in \mathbb{P} \cup \{0\} \) then \(a \geq 0 \) and we say \(a \) is **nonnegative**.

If \(-a \in \mathbb{P} \) then \(a < 0 \) and we say \(a \) is **negative** or **strictly negative**.

If \(-a \in \mathbb{P} \cup \{0\} \) then \(a \leq 0 \) and we say \(a \) is **nonpositive**.
Inequality Between Real Numbers

Definition

Let $a, b \in \mathbb{R}$.

1. If $a - b \in \mathbb{P}$, then we write $a > b$ or $b < a$.
2. If $a - b \in \mathbb{P} \cup \{0\}$, then we write $a \geq b$ or $b \leq a$.

Title:

Inequality Between Real Numbers

Subheading:

Definition

Text:

Let $a, b \in \mathbb{R}$.

1. If $a - b \in \mathbb{P}$, then we write $a > b$ or $b < a$.
2. If $a - b \in \mathbb{P} \cup \{0\}$, then we write $a \geq b$ or $b \leq a$.

Author:

J. Robert Buchanan
Theorem

Let \(a, b, c \in \mathbb{R} \).

1. If \(a > b \) and \(b > c \), then \(a > c \).
2. If \(a > b \), then \(a + c > b + c \).
3. If \(a > b \) and \(c > 0 \), then \(ca > cb \).
4. If \(a > b \) and \(c < 0 \), then \(ca < cb \).
Inequality Results

Theorem

Let $a, b, c \in \mathbb{R}$.

1. If $a > b$ and $b > c$, then $a > c$.
2. If $a > b$, then $a + c > b + c$.
3. If $a > b$ and $c > 0$, then $ca > cb$.
4. If $a > b$ and $c < 0$, then $ca < cb$.

Proof.

J. Robert Buchanan

Algebraic and Order Properties of \mathbb{R}
Theorem

1. If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$.
2. $1 > 0$
3. If $n \in \mathbb{N}$, then $n > 0$.
Theorem

1. If \(a \in \mathbb{R} \text{ and } a \neq 0 \), then \(a^2 > 0 \).
2. \(1 > 0 \)
3. If \(n \in \mathbb{N} \), then \(n > 0 \).

Proof.
Largest and Smallest Elements

Theorem

- \(\mathbb{P} \) has no largest and no smallest elements.
- \(\mathbb{R} \) has no smallest positive element and no largest negative element.
- \(\mathbb{P} \) (and consequently \(\mathbb{R} \) itself) is an infinite set.
Theorem

\[\mathbb{P} \text{ has no largest and no smallest elements.} \]
\[\mathbb{R} \text{ has no smallest positive element and no largest negative element.} \]
\[\mathbb{P} \text{ (and consequently } \mathbb{R} \text{ itself) is an infinite set.} \]

Theorem

If \(a \in \mathbb{R} \) is such that \(0 \leq a < \epsilon \) for every \(\epsilon > 0 \), then \(a = 0 \).
Largest and Smallest Elements

Theorem

- \(\mathbb{P} \) has no largest and no smallest elements.
- \(\mathbb{R} \) has no smallest positive element and no largest negative element.
- \(\mathbb{P} \) (and consequently \(\mathbb{R} \) itself) is an infinite set.

Theorem

- If \(a \in \mathbb{R} \) is such that \(0 \leq a < \varepsilon \) for every \(\varepsilon > 0 \), then \(a = 0 \).

Proof.
Theorem

If $ab > 0$, then either

1. $a > 0$ and $b > 0$, or
2. $a < 0$ and $b < 0$.
Theorem

If \(ab > 0 \), *then either*

1. \(a > 0 \) *and* \(b > 0 \), *or*
2. \(a < 0 \) *and* \(b < 0 \).

Proof.
Theorem

If $ab > 0$, then either
1. $a > 0$ and $b > 0$, or
2. $a < 0$ and $b < 0$.

Proof.

Corollary

If $ab < 0$, then either
1. $a > 0$ and $b < 0$, or
2. $a < 0$ and $b > 0$.
Inequalities

Definition
If a and b are positive real numbers, then

- the **arithmetic mean** is $\frac{1}{2}(a + b)$,
- the **geometric mean** is \sqrt{ab}.

J. Robert Buchanan
Algebraic and Order Properties of \mathbb{R}
Inequalities

Definition

If a and b are positive real numbers, then

- the **arithmetic mean** is $\frac{1}{2}(a + b)$,
- the **geometric mean** is \sqrt{ab}.

Theorem

(Arithmetic-Geometric Mean Inequality) If a and b are positive real numbers, then

$$\sqrt{ab} \leq \frac{1}{2}(a + b),$$

with equality holding if and only if $a = b$.
Inequalities

Definition

If \(a \) and \(b \) are positive real numbers, then

- the **arithmetic mean** is \(\frac{1}{2}(a + b) \),
- the **geometric mean** is \(\sqrt{ab} \).

Theorem

(Arithmetic-Geometric Mean Inequality) If \(a \) and \(b \) are positive real numbers, then

\[
\sqrt{ab} \leq \frac{1}{2}(a + b),
\]

with equality holding if and only if \(a = b \).

Proof.
Bernoulli’s Inequality

Theorem

If $x > -1$, then

$$(1 + x)^n \geq 1 + nx$$

for all $n \in \mathbb{N}$.
Bernoulli’s Inequality

Theorem

If $x > -1$, then

$$(1 + x)^n \geq 1 + nx$$

for all $n \in \mathbb{N}$.

Proof.
Homework

Read Section 2.1.

Pages 29-30: 1, 3, 4, 6, 9, 13, 18, 19

Boxed problems should be written up separately and handed in for grading at class time on Friday.