The Completeness Property of \mathbb{R}
MATH 464/506, Real Analysis

J. Robert Buchanan
Department of Mathematics
Summer 2007
We began this Chapter by stating that \mathbb{R} is a complete ordered field. So far we have discussed the algebraic field and ordering properties of \mathbb{R}. The algebraic and ordering properties of \mathbb{R} are also shared by \mathbb{Q}. The completeness property is not.
Upper and Lower Bounds

Definition

Let S be a nonempty subset of \mathbb{R}.

1. The set S is said to be **bounded above** if there exists a number $u \in \mathbb{R}$ such that $s \leq u$ for all $s \in S$. Each such number u is called an **upper bound** of S.

2. The set S is said to be **bounded below** if there exists a number $w \in \mathbb{R}$ such that $s \geq w$ for all $s \in S$. Each such number w is called an **lower bound** of S.

3. A set is said to be **bounded** if it is both bounded above and below. A set is said to be **unbounded** if it is not bounded.

Sketch
Definition

Let S be a nonempty subset of \mathbb{R}.

1. The set S is said to be **bounded above** if there exists a number $u \in \mathbb{R}$ such that $s \leq u$ for all $s \in S$. Each such number u is called an **upper bound** of S.

2. The set S is said to be **bounded below** if there exists a number $w \in \mathbb{R}$ such that $s \geq w$ for all $s \in S$. Each such number w is called an **lower bound** of S.

3. A set is said to be **bounded** if it is both bounded above and below. A set is said to be **unbounded** if it is not bounded.

Sketch
Suprema and Infima

Definition

Let S be a nonempty subset of \mathbb{R}.

1. If S is bounded above, then a number u is said to be a supremaum (or a least upper bound) of S if it satisfies the conditions:
 - u is an upper bound of S, and
 - if v is any upper bound of S, then $u \leq v$.

2. If S is bounded below, then a number w is said to be an infimum (or a greatest lower bound) of S if it satisfies the conditions:
 - w is an lower bound of S, and
 - if t is any lower bound of S, then $t \leq w$.

Notation: $u = \sup S$ and $w = \inf S$.
Theorem

- A set cannot have more than one infimum.
- A set cannot have more than one supremum.

Lemma

A number u is the supremum of a nonempty subset S of \mathbb{R} if and only if u satisfies the conditions:

1. $s \leq u$ for all $s \in S$,
2. if $v < u$, then there exists $s' \in S$ such that $v < s'$.

J. Robert Buchanan
The Completeness Property of \mathbb{R}
Theorem

- A set cannot have more than one infimum.
- A set cannot have more than one supremum.

Lemma

A number \(u \) is the supremum of a nonempty subset \(S \) of \(\mathbb{R} \) if and only if \(u \) satisfies the conditions:

1. \(s \leq u \) for all \(s \in S \),
2. if \(v < u \), then there exists \(s' \in S \) such that \(v < s' \).
Lemma

An upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exists an $s_\epsilon \in S$ such that $u - \epsilon < s_\epsilon$.

Proof.
Lemma

An upper bound u of a nonempty set S in \mathbb{R} is the supremum of S if and only if for every $\epsilon > 0$ there exists an $s_\epsilon \in S$ such that $u - \epsilon < s_\epsilon$.

Proof.
Find the suprema and infima (if they exist) for the following sets.

1. $S_1 = \{1, 2, 3, 4, 5\}$
2. $S_2 = \{x : 0 \leq x \leq 1\}$
3. $S_3 = \{x : 0 < x < 1\}$
4. $S_4 = \{x : 0 < x\}$
Completeness Property of \(\mathbb{R} \): Every nonempty set of real numbers that has an upper bound also has a supremum in \(\mathbb{R} \). Likewise, every nonempty set of real numbers that has a lower bound also has an infimum in \(\mathbb{R} \).

Remark: The completeness of \(\mathbb{R} \) is essential to our later discussion of limits.

Remark: \(\mathbb{Q} \) is not complete.
Completeness Property of \mathbb{R}: Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R}. Likewise, every nonempty set of real numbers that has an lower bound also has an infimum in \mathbb{R}.

Remark: The completeness of \mathbb{R} is essential to our later discussion of limits.

Remark: \mathbb{Q} is not complete.
Completeness Property of \mathbb{R}: Every nonempty set of real numbers that has an upper bound also has a supremum in \mathbb{R}. Likewise, every nonempty set of real numbers that has a lower bound also has an infimum in \mathbb{R}.

Remark: The completeness of \mathbb{R} is essential to our later discussion of limits.

Remark: \mathbb{Q} is not complete.
Read Section 2.3.

Page 38: 1, 3, 4, 5, 8, 10

Boxed problems should be written up separately and submitted for grading at class time on Friday.