Limits of Functions
MATH 464/506, *Real Analysis*

J. Robert Buchanan

Department of Mathematics

Summer 2007
Cluster Points

Definition

Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is a **cluster point** of A if for every $\delta > 0$ there exists at least one point of $x \in A$, $x \neq c$ such that $|x - c| < \delta$.

Remarks:

- This is equivalent to “A point $c \in \mathbb{R}$ is a cluster point of A if every δ-neighborhood $V_{\delta}(c)$ of c contains at least one point of A distinct from c.
- Point c does not have to be a point in A.
Definition

Let $A \subseteq \mathbb{R}$. A point $c \in \mathbb{R}$ is a **cluster point** of A if for every $\delta > 0$ there exists at least one point of $x \in A$, $x \neq c$ such that $|x - c| < \delta$.

Remarks:

- This is equivalent to “A point $c \in \mathbb{R}$ is a cluster point of A if every δ-neighborhood $V_\delta(c)$ of c contains at least one point of A distinct from c.
- Point c does not have to be a point in A.
Definition

Let \(A \subseteq \mathbb{R} \). A point \(c \in \mathbb{R} \) is a **cluster point** of \(A \) if for every \(\delta > 0 \) there exists at least one point of \(x \in A, x \neq c \) such that \(|x - c| < \delta \).

Remarks:

- This is equivalent to “A point \(c \in \mathbb{R} \) is a cluster point of \(A \) if every \(\delta \)-neighborhood \(V_\delta(c) \) of \(c \) contains at least one point of \(A \) distinct from \(c \).
- Point \(c \) does not have to be a point in \(A \).
Theorem

A number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence (a_n) in A such that $\lim(a_n) = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.

Proof.
Theorem

A number $c \in \mathbb{R}$ is a cluster point of a subset A of \mathbb{R} if and only if there exists a sequence (a_n) in A such that $\lim(a_n) = c$ and $a_n \neq c$ for all $n \in \mathbb{N}$.

Proof.
Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1)$</td>
<td>$[0, 1]$</td>
</tr>
<tr>
<td>${1, 2, \ldots, n}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\left{\frac{1}{n} : n \in \mathbb{N}\right}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$[0, 1] \cap \mathbb{Q}$</td>
<td>$[0, 1]$</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1)$</td>
<td>$[0, 1]$</td>
</tr>
<tr>
<td>${1, 2, \ldots, n}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>${\frac{1}{n} : n \in \mathbb{N}}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$[0, 1] \cap \mathbb{Q}$</td>
<td>$[0, 1]$</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 1))</td>
<td>([0, 1])</td>
</tr>
<tr>
<td>({1, 2, \ldots, n})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\left{ \frac{1}{n} : n \in \mathbb{N} \right})</td>
<td>({0})</td>
</tr>
<tr>
<td>([0, 1] \cap \mathbb{Q})</td>
<td>([0, 1])</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 1))</td>
<td>([0, 1])</td>
</tr>
<tr>
<td>({1, 2, \ldots, n})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>({\frac{1}{n} : n \in \mathbb{N}})</td>
<td>({0})</td>
</tr>
<tr>
<td>([0, 1] \cap \mathbb{Q})</td>
<td>([0, 1])</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 1))</td>
<td>([0, 1])</td>
</tr>
<tr>
<td>({1, 2, \ldots, n})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\mathbb{N})</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\left{\frac{1}{n} : n \in \mathbb{N}\right})</td>
<td>({0})</td>
</tr>
<tr>
<td>([0, 1] \cap \mathbb{Q})</td>
<td>([0, 1])</td>
</tr>
</tbody>
</table>
Examples

Example

<table>
<thead>
<tr>
<th>Set</th>
<th>Cluster Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, 1)$</td>
<td>$[0, 1]$</td>
</tr>
<tr>
<td>${1, 2, \ldots, n}$</td>
<td>\emptyset</td>
</tr>
<tr>
<td>\mathbb{N}</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\left{\frac{1}{n} : n \in \mathbb{N}\right}$</td>
<td>${0}$</td>
</tr>
<tr>
<td>$[0, 1] \cap \mathbb{Q}$</td>
<td>$[0, 1]$</td>
</tr>
</tbody>
</table>
Definition

Let $A \subseteq \mathbb{R}$ and let c be a cluster point of A. Suppose $f : A \rightarrow \mathbb{R}$ then a real number L is said to be a limit of f at c if, given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Remarks:

- Notation: $\lim_{x \to c} f(x) = L$
- δ usually depends on ϵ, therefore $\delta \equiv \delta(\epsilon)$
- $0 < |x - c| < \delta$ implies $x \neq c$
- If the limit of f at c does not exist we say f diverges at c.
Definition of the Limit

Definition

Let $A \subseteq \mathbb{R}$ and let c be a cluster point of A. Suppose $f : A \to \mathbb{R}$ then a real number L is said to be a **limit of f at c** if, given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Remarks:

- **Notation:** $\lim_{x \to c} f(x) = L$
- δ usually depends on ϵ, therefore $\delta \equiv \delta(\epsilon)$
- $0 < |x - c| < \delta$ implies $x \neq c$
- If the limit of f at c does not exist we say f **diverges at c**.
Definition

Let $A \subseteq \mathbb{R}$ and let c be a cluster point of A. Suppose $f : A \rightarrow \mathbb{R}$ then a real number L is said to be a limit of f at c if, given any $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \epsilon$.

Remarks:

- Notation: $\lim_{x \to c} f(x) = L$
- δ usually depends on ϵ, therefore $\delta \equiv \delta(\epsilon)$
- $0 < |x - c| < \delta$ implies $x \neq c$
- If the limit of f at c does not exist we say f diverges at c.
Definition

Let $A \subseteq \mathbb{R}$ and let c be a cluster point of A. Suppose $f : A \rightarrow \mathbb{R}$ then a real number L is said to be a limit of f at c if, given any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

Remarks:

- Notation: $\lim_{x \to c} f(x) = L$
- δ usually depends on ε, therefore $\delta \equiv \delta(\varepsilon)$
- $0 < |x - c| < \delta$ implies $x \neq c$
- If the limit of f at c does not exist we say f diverges at c.
Definition of the Limit

Definition

Let $A \subseteq \mathbb{R}$ and let c be a cluster point of A. Suppose $f : A \rightarrow \mathbb{R}$ then a real number L is said to be a limit of f at c if, given any $\varepsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

Remarks:

- Notation: $\lim_{x \to c} f(x) = L$
- δ usually depends on ε, therefore $\delta \equiv \delta(\varepsilon)$
- $0 < |x - c| < \delta$ implies $x \neq c$
- If the limit of f at c does not exist we say f diverges at c.
Theorem

If \(f : A \rightarrow \mathbb{R} \) and if \(c \) is a cluster point of \(A \), then \(f \) can have only one limit at \(c \).

Proof.

Theorem

Let \(f : A \rightarrow \mathbb{R} \) and let \(c \) be a cluster point of \(A \). Then the following statements are equivalent.

1. \(\lim_{x \to c} f(x) = L \)
2. Given any \(\epsilon \)-neighborhood \(V_\epsilon(L) \) of \(L \), there exists a \(\delta \)-neighborhood \(V_\delta(c) \) of \(c \) such that if \(x \neq c \) is any point in \(V_\delta(c) \cap A \), then \(f(x) \in V_\epsilon(L) \).
Uniqueness of Limits

Theorem

If \(f : A \rightarrow \mathbb{R} \) and if \(c \) is a cluster point of \(A \), then \(f \) can have only one limit at \(c \).

Proof.

Theorem

Let \(f : A \rightarrow \mathbb{R} \) and let \(c \) be a cluster point of \(A \). Then the following statements are equivalent.

1. \(\lim_{x \to c} f(x) = L \)

2. Given any \(\epsilon \)-neighborhood \(V_\epsilon(L) \) of \(L \), there exists a \(\delta \)-neighborhood \(V_\delta(c) \) of \(c \) such that if \(x \neq c \) is any point in \(V_\delta(c) \cap A \), then \(f(x) \in V_\epsilon(L) \).

Proof.
Theorem

If \(f : A \to \mathbb{R} \) and if \(c \) is a cluster point of \(A \), then \(f \) can have only one limit at \(c \).

Proof.

Theorem

Let \(f : A \to \mathbb{R} \) and let \(c \) be a cluster point of \(A \). Then the following statements are equivalent.

1. \(\lim_{x \to c} f(x) = L \)
2. Given any \(\epsilon \)-neighborhood \(V_\epsilon(L) \) of \(L \), there exists a \(\delta \)-neighborhood \(V_\delta(c) \) of \(c \) such that if \(x \neq c \) is any point in \(V_\delta(c) \cap A \), then \(f(x) \in V_\epsilon(L) \).

Proof.
Uniqueness of Limits

Theorem

If $f : A \rightarrow \mathbb{R}$ *and if* c *is a cluster point of* A, *then* f *can have only one limit at* c.

Proof.

Let $f : A \rightarrow \mathbb{R}$ *and let* c *be a cluster point of* A. *Then the following statements are equivalent.*

1. $\lim_{x \to c} f(x) = L$

2. *Given any* ϵ-*neighborhood* $V_\epsilon(L)$ *of* L, *there exists a* δ-*neighborhood* $V_\delta(c)$ *of* c *such that if* $x \neq c$ *is any point in* $V_\delta(c) \cap A$, *then* $f(x) \in V_\epsilon(L)$.

Proof.
How to prove \(\lim_{x \to c} f(x) = L \):

1. Let \(\epsilon > 0 \).
2. Find a value of \(\delta > 0 \) that will guarantee that whenever \(x \) is within a distance \(\delta \) from \(c \) (but not equal to \(c \)), \(f(x) \) is within a distance \(\epsilon \) of \(L \).
3. Prove that for this value of \(\delta \),

\[
\forall x \in D(f), \ 0 < |x - c| < \delta \implies |f(x) - L| < \epsilon.
\]
Examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\lim_{x \to c} b = b)</td>
</tr>
<tr>
<td>2</td>
<td>(\lim_{x \to c} x = c)</td>
</tr>
<tr>
<td>3</td>
<td>(\lim_{x \to c} x^2 = c^2)</td>
</tr>
<tr>
<td>4</td>
<td>(\lim_{x \to c} \frac{1}{x} = \frac{1}{c}) if (c > 0).</td>
</tr>
<tr>
<td>5</td>
<td>(\lim_{x \to 2} \frac{x^3 - 4}{x^2 + 1} = \frac{4}{5})</td>
</tr>
</tbody>
</table>
Sequential Criterion for Limits

Theorem (Sequential Criterion)

Let $f : A \to \mathbb{R}$ and let c be a cluster point of A. Then the following are equivalent.

1. $\lim_{x \to c} f(x) = L$.
2. For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $n \in \mathbb{N}$, the sequence $(f(x_n))$ converges to L.

Proof.
Theorem (Sequential Criterion)

Let $f : A \rightarrow \mathbb{R}$ and let c be a cluster point of A. Then the following are equivalent.

1. $\lim_{x \rightarrow c} f(x) = L$.

2. For every sequence (x_n) in A that converges to c such that $x_n \neq c$ for all $n \in \mathbb{N}$, the sequence $(f(x_n))$ converges to L.

Proof.
Divergence Criteria

Theorem

Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in \mathbb{R}$ be a cluster point of A.

1. If $L \in \mathbb{R}$, then f does not have limit L at c if and only if there exists a sequence (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ such that the sequence (x_n) converges to c but the sequence $(f(x_n))$ does not converge to L.

2. The function f does not have a limit at c if and only if there exists a sequence (x_n) in A with $x_n \neq c$ for all $n \in \mathbb{N}$ such that the sequence (x_n) converges to c but the sequence $(f(x_n))$ does not converge in \mathbb{R}.
Example

<table>
<thead>
<tr>
<th></th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[\lim_{x \to 0} \frac{1}{x}]</td>
</tr>
<tr>
<td>2</td>
<td>[\lim_{x \to 0} \begin{cases} +1 & \text{if } x > 0, \ 0 & \text{if } x = 0, \ -1 & \text{if } x < 0. \end{cases}]</td>
</tr>
<tr>
<td>3</td>
<td>[\lim_{x \to 0} \sin \left(\frac{1}{x} \right)]</td>
</tr>
</tbody>
</table>
Homework

- Read Section 4.1
- Page 104: 1, 3, 7, 9, 12, 14

Boxed problems should be written up separately and submitted for grading at class time on Friday.