Subsequences and Bolzano-Weierstrass Theorem

MATH 464/506, Real Analysis

J. Robert Buchanan

Department of Mathematics

Summer 2007
Suppose $X = (x_n)$ is a sequence. If (n_k) is a strictly increasing sequence of natural numbers (i.e., $n_1 < n_2 < \cdots < n_k < \cdots$) then the sequence $X' = (x_{n_k})$ is said to be a subsequence of X Thus X' is the sequence

$$(x_{n_1}, x_{n_2}, \ldots, x_{n_k}, x_{n_{k+1}}, \ldots).$$
Theorem

If a sequence $X = (x_n)$ of real numbers converges to a real number L, then any subsequence $X' = (x_{n_k})$ of X also converges to L.

Proof.
Theorem

If a sequence \(X = (x_n) \) of real numbers converges to a real number \(L \), then any subsequence \(X' = (x_{n_k}) \) of \(X \) also converges to \(L \).

Proof.
Equivalent Statements

Theorem

Let \(X = (x_n) \) be a sequence of real numbers. The following statements are equivalent:

1. The sequence \(X = (x_n) \) does not converge to \(L \in \mathbb{R} \).
2. There exists an \(\epsilon_0 > 0 \) such that for any \(k \in \mathbb{N} \), there exists \(n_k \in \mathbb{N} \) such that \(n_k \geq k \) and \(|x_{n_k} - L| \geq \epsilon_0 \).
3. There exists an \(\epsilon_0 > 0 \) and a subsequence \(X' = (x_{n_k}) \) of \(X \) such that \(|x_{n_k} - L| \geq \epsilon_0 \) for all \(k \in \mathbb{N} \).

Proof.
Equivalent Statements

Theorem

Let \(X = (x_n) \) be a sequence of real numbers. The following statements are equivalent:

1. The sequence \(X = (x_n) \) does not converge to \(L \in \mathbb{R} \).
2. There exists an \(\epsilon_0 > 0 \) such that for any \(k \in \mathbb{N} \), there exists \(n_k \in \mathbb{N} \) such that \(n_k \geq k \) and \(|x_{n_k} - L| \geq \epsilon_0 \).
3. There exists an \(\epsilon_0 > 0 \) and a subsequence \(X' = (x_{n_k}) \) of \(X \) such that \(|x_{n_k} - L| \geq \epsilon_0 \) for all \(k \in \mathbb{N} \).

Proof.
Divergence Criteria

Theorem

If a sequence $X = (x_n)$ of real numbers has either of the following properties, then X is divergent.

1. X has two convergent subsequences $X' = (x_{n_k})$ and $X'' = (x_{r_k})$ whose limits are not equal.
2. X is unbounded.
Theorem (Monotone Subsequence Theorem)

If $X = (x_n)$ is a sequence of real numbers, then there is a subsequence of X that is monotone.

Proof.
Theorem (Monotone Subsequence Theorem)

If \(X = (x_n) \) is a sequence of real numbers, then there is a subsequence of \(X \) that is monotone.

Proof.
Theorem (Bolzano-Weierstrass Theorem)

A bounded sequence of real numbers has a convergent subsequence.

Proof.

Let $X = (x_n)$ be a bounded sequence of real numbers and let $L \in \mathbb{R}$ have the property that every convergent subsequence of X converges to L. Then the sequence X converges to L.
Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass Theorem)

A bounded sequence of real numbers has a convergent subsequence.

Proof.

Let $X = (x_n)$ be a bounded sequence of real numbers and let $L \in \mathbb{R}$ have the property that every convergent subsequence of X converges to L. Then the sequence X converges to L.

Proof.
Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass Theorem)

A bounded sequence of real numbers has a convergent subsequence.

Proof.

Theorem

Let \(X = (x_n) \) be a bounded sequence of real numbers and let \(L \in \mathbb{R} \) have the property that every convergent subsequence of \(X \) converges to \(L \). Then the sequence \(X \) converges to \(L \).

Proof.
Bolzano-Weierstrass Theorem

Theorem (Bolzano-Weierstrass Theorem)

A bounded sequence of real numbers has a convergent subsequence.

Proof.

Let $X = (x_n)$ be a bounded sequence of real numbers and let $L \in \mathbb{R}$ have the property that every convergent subsequence of X converges to L. Then the sequence X converges to L.

Proof.
Real Section 3.4.

Page 80: 1, 3, 5, 9, 11, 12, 14

Boxed problems should be written up separately and submitted for grading at class time on Friday.