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Early Exercise

Since American style options give the holder the same rights as
European style options plus the possibility of early exercise we
know that

Ce ≤ Ca and Pe ≤ Pa.



Early Exercise

An American option (a call, for instance) may have a positive
payoff even when the corresponding European call has zero
payoff.
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Trade-offs of Early Exercise (1 of 2)

Consider an American-style call option on a
nondividend-paying stock.

Ca ≥ Ce = Pe + S(t)− Ke−r(T−t)

Ca ≥ S(t)− Ke−r(T−t)

Ca ≥ S(t)− K

According to the last inequality, it is better to sell the American
call, than to exercise it early.
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Trade-offs of Early Exercise (2 of 2)

Consider an American-style call option on a dividend-paying
stock. If the option is exercised early you,
I own the stock and are entitled to receive any dividends

paid after exercise,

I pay the strike price K early foregoing the interest

K
(

er(T−t) − 1
)

you could have earned on it, and
I lose the insurance provided by the call in case S(T ) < K .
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Parity

Recall: European options obey the Put-Call Parity Formula:

Pe + S = Ce + Ke−rT

American options do not satisfy a parity formula, but some
inequalities must be satisfied.

Theorem
Suppose the current value of a security is S, the risk-free
interest rate is r , and Ca and Pa are the values of an American
call and put respectively on the security with strike price K and
expiry T > 0. Then

Ca + K ≥ S + Pa
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Proof
Assume to the contrary that Ca + K < S + Pa.
I Sell the security, sell the put, and buy the call. This

produces a cash flow of S + Pa − Ca.
I Invest this amount at the risk-free rate,
I If the owner of the American put chooses to exercise it at

time 0 ≤ t ≤ T , the call option can be exercised to
purchase the security for K .

I The net balance of the investment is

(S + Pa − Ca)ert − K > Kert − K ≥ 0.

I If the American put expires out of the money, exercise the
call to close the short position in the security at time T .
The net balance of the investment is

(S + Pa − Ca)erT − K > KerT − K > 0.

Thus the investor receives a non-negative profit in either case,
violating the principle of no arbitrage.



Another Inequality

Theorem
Suppose the current value of a security is S, the risk-free
interest rate is r , and Ca and Pa are the values of an American
call and put respectively on the security with strike price K and
expiry T > 0. Then

S + Pa ≥ Ca + Ke−rT



Proof

Suppose S + Pa < Ca + Ke−rT .
I Sell an American call and buy the security and the

American put. Thus Ca − S − Pa is borrowed at t = 0.
I If the owner of the call decides to exercise it at any time

0 ≤ t ≤ T , sell the security for the strike price K by
exercising the put. The amount of loan to be repaid is
(Ca − S − Pa)ert and

(Ca − S − Pa)ert + K = (Ca + Ke−rt − S − Pa)ert

≥ (Ca + Ke−rT − S − Pa)ert

since r > 0. By assumption S + Pa < Ca + Ke−rT , so the
last expression above is positive.



Combination of Inequalities

Combining the results of the last two theorems we have the
following inequality.

S − K ≤ Ca − Pa ≤ S − Ke−rT



Example

The price is a security is currently $36, the risk-free interest
rate is 5.5% compounded continuously, and the strike price of a
six-month American call option worth $2.03 is $37. The range
of no arbitrage values of a six-month American put on the same
security with the same strike price is

S − K ≤ Ca − Pa ≤ S − Ke−rT

36− 37 ≤ 2.03− Pa ≤ 36− 37e−0.055(6/12)

2.03 ≤ Pa ≤ 3.03
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A Surprising Equality

We know Ca ≥ Ce, but in fact:

Theorem
If Ca and Ce are the values of American and European call
options respectively on the same underlying
non-dividend-paying security with identical strike prices and
expiry times, then

Ca = Ce.

Remark: American calls on non-dividend-paying stocks are not
exercised early.
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Proof
Suppose that Ca > Ce.
I Sell the American call and buy a European call with the

same strike price K , expiry date T , and underlying
security. The net cash flow Ca − Ce > 0 would be invested
at the risk-free rate r .

I If the owner of the American call chooses to exercise the
option at some time t ≤ T , sell short a share of the security
for amount K and add the proceeds to the amount invested
at the risk-free rate.

I At time T close out the short position in the security by
exercising the European option. The amount due is

(Ca − Ce)erT + K (er(T−t) − 1) > 0.

I If the American option is not exercised, the European
option can be allowed to expire and the amount due is

(Ca − Ce)erT > 0.



American Puts

Theorem
For a non-dividend-paying stock whose current price is S and
for which the American put with a strike price of K and expiry T
has a value of Pa, satisfies the inequality

(K − S)+ ≤ Pa < K .



Proof

I Suppose Pa < K − S.
I Buy the put and the stock (cost Pa + S).
I Immediately exercise the put and sell the stock for K .
I Net transaction K − Pa − S > 0 (arbitrage).

I Suppose Pa > K .
I Sell the put and invest proceeds at risk-free rate r . Amount

due at time t is Paert .
I If the owner of the put chooses to exercise it, buy the stock

for K and sell it for S(t). Net transaction
S(t)− K + Paert > S(t) + K (ert − 1) > 0.

I If the put expires unused, the profit is PaerT > 0.
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Example

Remark: in contrast to American calls, American puts on
non-dividend-paying stocks will sometimes be exercised early.

Consider a 12-month American put on a non-dividend paying
stock currently worth $15. If the risk-free interest rate is 3.25%
per year and the strike price of the put is $470, should the
option be exercised early?



Solution

I We were not told the price of the put, but we know
Pa < K = 470.

I If we exercise the put immediately, we gain 470− 15 = 455
and invest at the risk-free rate.

I In one year the amount due is
455e0.0325 = 470.03 > K > Pa.

Thus the option should be exercised early.



American Calls

Theorem
For a non-dividend-paying stock whose current price is S and
for which the American call with a strike price of K and expiry T
has a value of Ca, satisfies the inequality

(S − Ke−rT )+ ≤ Ca < S.



Determining Values of American Options (1 of 3)

Theorem
Suppose T1 < T2 and
I let Ca(Ti) be the value of an American call with expiry Ti ,

and
I let Pa(Ti) be the value of an American put with expiry Ti ,

then

Ca(T1) ≤ Ca(T2)

Pa(T1) ≤ Pa(T2).



Proof

Suppose Ca(T1) > Ca(T2).
I Buy the option Ca(T2) and sell the option Ca(T1). Initial

transaction,
Ca(T1) > Ca(T2) > 0

I If the owner of Ca(T1) chooses to exercise the option, we
can exercise the option Ca(T2). Transaction cost,

(S(t)− K )− (S(t)− K ) = 0.

Since we keep the initial transaction profit, arbitrage is present.



Determining Values of American Options (2 of 3)

Theorem
Suppose K1 < K2 and
I let Ca(Ki) be the value of an American call with strike price

Ki , and
I let Pa(Ki) be the value of an American put with strike price

Ki ,
then

Ca(K2) ≤ Ca(K1)

Pa(K1) ≤ Pa(K2)

Ca(K1)− Ca(K2) ≤ K2 − K1

Pa(K2)− Pa(K1) ≤ K2 − K1.



Determining Values of American Options (3 of 3)

Theorem
Suppose S1 < S2 and
I let Ca(Si) be the value of an American call written on a

stock whose value is Si , and
I let Pa(Si) be the value of an American put written on a

stock whose value is Si ,
then

Ca(S1) ≤ Ca(S2)

Pa(S2) ≤ Pa(S1)

Ca(S2)− Ca(S1) ≤ S2 − S1

Pa(S1)− Pa(S2) ≤ S2 − S1.



Proof (1 of 3)

Suppose Ca(S1) > Ca(S2).

Ordinarily we would argue to
purchase the call Ca(S2) and sell the call Ca(S1); however,

the
stock has only one price for all buyers and sellers, initially S(0).

Define x1 =
S1

S(0)
and x2 =

S2

S(0)
.
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Proof (2 of 3)

I Sell x1 options Ca(S(0)) where

x1Ca(S(0)) = Ca(S1)

and buy x2 options Ca(S(0)) where

x2Ca(S(0)) = Ca(S2).

Initial transaction is

Ca(S1)− Ca(S2) > 0.

I If the owner of option Ca(S1) chooses to exercise it, option
Ca(S2) is exercised as well. Transaction profit is

x2(S(t)− K )− x1(S(t)− K ) = (x2 − x1)(S(t)− K ) > 0.

Arbitrage is present.



Proof (3 of 3)

Suppose Pa(S1)− Pa(S2) > S2 − S1, this is equivalent to the
inequality

Pa(S1) + S1 > Pa(S2) + S2.

I Buy x2 put options Pa(S(0)), sell x1 put options Pa(S(0)),
and buy x2 − x1 shares of stock. Initial transaction,

x1Pa(S(0))− x2Pa(S(0))− (x2 − x1)S(0)

= Pa(S1)− Pa(S2)− (S2 − S1) > 0.

I If the owner of put Pa(S1) chooses to exercise the option,
we exercise put Pa(S2) and sell our x2− x1 shares of stock.

(x2−x1)S(t)+x2(K −S(t))−x1(K −S(t)) = (x2−x1)K > 0

Arbitrage is present.



Binomial Pricing of American Puts

Assumptions:
I Strike price of the American put is K ,
I Expiry date of the American put is T > 0,
I Price of the security at time t with 0 ≤ t ≤ T is S(t),
I Continuously compounded risk-free interest rate is r , and
I Price of the security follows a geometric Brownian motion

with variance σ2.



Binomial Model

The binomial model is a discrete approximation to the
Black-Scholes initial value problem originally developed by Cox,
Ross, and Rubinstein.
Assumptions:
I Strike price of the call option is K .
I Exercise time of the call option is T .
I Present price of the security is S(0).
I Continuously compounded interest rate is r .
I Price of the security follows a geometric Brownian motion

with variance σ2.
I Present time is t .



Binomial Lattice
If the value of the stock is S(0) then at t = T

S(T ) =

{
uS(0) with probability p,
dS(0) with probability 1− p

where 0 < d < 1 < u and 0 < p < 1.

SH0L

SHTL=u SH0L
p

1-p

SHTL=d SH0L



Making the Continuous and Discrete Models Agree (1
of 2)

Continuous model:

dS = µS dt + σS dW (t)

d(ln S) = (µ− 1
2
σ2) dt + σ dW (t)

E [ln S(t)] = ln S(0) + (µ− 1
2
σ2)t

V (ln S(t)) = σ2t

In the absence of arbitrage µ = r , i.e. the return on the security
should be the same as the return on an equivalent amount in
savings.
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Making the Continuous and Discrete Models Agree (2
of 2)

ln S(0) + (r − 1
2
σ2)∆t = p ln(uS(0)) + (1− p) ln(dS(0))

(r − 1
2
σ2)∆t = p ln u + (1− p) ln d

The variance in the returns in the continuous and discrete
models should also agree.

σ2∆t = p[ln(uS(0))]2 + (1− p)[ln(dS(0))]2

− (p ln(uS(0)) + (1− p) ln(dS(0)))2

= p(1− p) (ln u − ln d)2
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Summary

We would like to write p, u, and d as functions of r , σ, and ∆t .

p ln u + (1− p) ln d = (r − 1
2
σ2)∆t

p(1− p) (ln u − ln d)2 = σ2∆t

I We need a third equation in order to solve this system.

I We are free to pick any equation consistent with the first
two.

I We pick d = 1/u (why?).
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Solving the System

(2p − 1) ln u = (r − 1
2
σ2)∆t

4p(1− p)(ln u)2 = σ2∆t

1. Square the first equation and add to the second.
2. Ignore terms involving (∆t)2.

u = eσ
√

∆t

d = e−σ
√

∆t

p =
1
2

(
1 +

( r
σ
− σ

2

)√
∆t
)
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Definitions

u: factor by which the stock price may increase
during a time step.

u = eσ
√

∆t > 1

d : factor by which the stock price may decrease
during a time step.

0 < d = e−σ
√

∆t < 1

p: probability of an increase in stock price during a
time step.

0 < p =
1
2

(
1 +

( r
σ
− σ

2

)√
∆t
)
< 1



Example
Suppose S(0) = 1, r = 0.10, σ = 0.20, T = 1/4, ∆t = 1/12,
then the lattice of security prices resembles:

1.

1.05943

0.9439

1.1224

1.

0.890947

1.18911

1.05943

0.9439

0.840965



Intrinsic Value

Observation: an American put is always worth at least as
much as the payoff generated by immediate exercise.

Definition
The intrinsic value at time t of an American put is the quantity
(K − S(t))+.

The value of an American put is the greater of its intrinsic value
and the present value of its expected intrinsic value at the next
time step.
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One-Step Illustration (1 of 2)

HK-SH0LL+

HK-u SH0LL+

HK-d SH0LL+



One-Step Illustration (2 of 2)

At expiry the American put is worth

Pa(T ) =

{
(K − uS(0))+ with probability p,
(K − dS(0))+ with probability 1− p.

At t = 0 the American put is worth

Pa(0) = max
{

(K − S(0))+,

e−rT [p(K − uS(0))+ + (1− p)(K − dS(0))+
]}

= max
{

(K − S(0))+,e−rTE
[
(K − S(T ))+

]}
= max

{
(K − S(0))+,e−rTE [Pa(T )]

}
.
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Two-Step Illustration (1 of 2)

HK-SH0LL+

HK-u SH0LL+

HK-d SH0LL+

HK-u2 SH0LL+

HK-u d SH0LL+

HK-d2 SH0LL+



Two-Step Illustration (2 of 2)

At t = T/2, if the put has not been exercised already, an
investor will exercise it, if the option is worth more than the
present value of the expected value at t = T .

Pa(T/2) = max
{

(K − S(T/2))+,e−rT/2E [Pa(T )]
}

Using the same logic, the value of the put at t = 0 is the larger
of the intrinsic value at t = 0 and the present value of the
expected value at t = T/2.

Pa(0) = max
{

(K − S(0))+,e−rT/2E [Pa(T/2)]
}
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Example

Suppose the current price of a security is $32, the risk-free
interest rate is 10% compounded continuously, and the volatility
of Brownian motion for the security is 20%. Find the price of a
two-month American put with a strike price of $34 on the
security.

We will set ∆t = 1/12, then

u ≈ 1.0594
d ≈ 0.9439
p ≈ 0.5574.
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Stock Price Lattice

32.

33.9019

30.2048

35.9168

32.

28.5103



Intrinsic Value Lattice

2.

0.0981044

3.7952

0

2.

5.48969



Pricing the Put at t = 1/12

If S(1/12) = 33.9019 then

Pa(1/12) = max
{

(34− 33.9019)+,

e−0.10/12(0.5574(34− 35.9168)+

+ (1− 0.5574)(34− 32)+)
}

= 0.8779.

If S(1/12) = 30.2048 then

Pa(1/12) = max
{

(34− 30.2048)+,

e−0.10/12(0.5574(34− 32)+

+ (1− 0.5574)(34− 28.5103)+)
}

= 3.7942.



Pricing the Put at t = 0

Pa(0) = max
{

(34− 32)+,

e−0.10/12[(0.5574)(0.8779) + (0.4426)(3.7952)]
}

= 2.1513.



American Put Lattice

2.15125

0.877945

3.7952

0

2.

5.48969



Summary:

 Pa(t)
(K − S(t))+

S(t)
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General Pricing Framework

Using a recursive procedure, the value of an American option,
for example a put, is given by

Pa(T ) = (K − S(T ))+

Pa((n − 1)∆t) = max
{

(K − S((n − 1)∆t))+,e−r∆tE [Pa(T )]
}

Pa((n − 2)∆t) = max
{

(K − S((n − 2)∆t))+,

e−r∆tE [Pa((n − 1)∆T )]
}

...
Pa(0) = max

{
(K − S(0))+,e−r∆tE [Pa(∆T )]

}
.



Early Exercise for American Calls

If a stock pays a dividend during the life of an American call
option, it may be advantageous to exercise the call early so as
to collect the dividend.

Example
Suppose a stock is currently worth $150 and has a volatility of
25% per year. The stock will pay a dividend of $15 in two
months. The risk-free interest rate is 3.25%. Find the prices of
two-month European and American call options on the stock
with strikes prices of $150.



Solution (1 of 3)

If ∆t = 1/12, then

u = eσ
√

∆t ≈ 1.07484
d = e−σ

√
∆t ≈ 0.930374

p =
1
2

(
1 +

( r
σ
− σ

2

)√
∆t
)
≈ 0.500722.



Solution (2 of 3) Stock Prices

150

161.226

139.556

158.291

135.

114.839



Solution (3 of 3) Call Prices

1.93942
5.60565

4.00998
11.2255

0
0

8.2911
8.2911

0
0

0
0


