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Efficient Market Hypothesis

The Efficient Market Hypothesis has many forms but
essentially can be taken to mean:
I prices on all securities and products reflect all known

information,

I current prices are the best, unbiased estimate of the value
of the security or product,

I prices will adjust to any new information nearly
instantaneously,

I an investor cannot outperform the market using known
information except through luck.
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Arbitrage

I Arbitrage arises from mis-priced financial instruments or
commodities.

I To take advantage of mis-priced items, an investor will have
to purchase and sell identical items (or interchangeable
items) in a short time (nearly simultaneously).

I The Efficient Market Hypothesis implies that arbitrage
situations are usually short-lived (why?).



Two Types of Arbitrage

Type A: a trading strategy which results in an initial positive
cash flow to the investor with no risk of future loss.

Type B: a trading strategy requiring no initial cash
investment, has no risk of future loss, and has a
positive probability of profit.



Simple Arbitrage Situation

Devise a trading strategy for the following situation which
results in a positive profit to the trader.

I CostCo sells 100 stamps for $48.75.
I USPS sell 100 stamps for $49.00.

Purchase the stamps from CostCo and sell them outside the
local post office. Each trade generates $0.25 (which might not
seem like much, but do it a million times).
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Elimination of Arbitrage
I Suppose we can invest $1000 for two years at an annually

compounded interest rate of 3.25%.
I Suppose we can invest $1000 for one year at an annually

compounded interest rate of 2.75% and then lend the
amount due at the annually compounded rate r% for a
second year.

I What should r be in the absence of arbitrage?

The two
investments should have the same future value.

1000(1 + 0.0325)2 = 1000(1 + 0.0275)(1 + r)
r = 0.0375243

I If r is not as determined above, what arbitrage
opportunities are available?

If
(1 + 0.0325)2 < (1 + 0.0275)(1 + r) then borrow at 3.25%
for two years and lend at (1 + 0.0275)(1 + r) for two years.
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Intuitive Idea

Imagine we will bet on the outcome of an experiment.

The Arbitrage Theorem states that either the probabilities of
the outcomes are such that
I all bets are fair, or
I there is a betting scheme which produces a positive gain

independent of the outcome of the experiment.



Odds

The odds against an outcome X are related to probabilities of
the outcome according to the formula:

n : m against ⇐⇒ P (X ) =
m

m + n
.

The odds for an outcome X are related to probabilities of the
outcome according to the formula:

n : m in favor ⇐⇒ P (X ) =
n

m + n
.



Wagering

For a wager of m dollars on a event X with odds against of
n : m,

I if X occurs, we win n + m dollars (our initial investment of
m dollars plus n dollars in profit),

I if X does not occur, we lose our investment of m dollars.



Parimutuel Wagering

In some situations (e.g., sporting events), the odds are
determined by the amounts of money wagered by the bettors
themselves (parimutuel wagering).

Ignoring several complicating factors, suppose the following
amounts were wagered on each of six horses to win a race.

Horse 1 2 3 4 5 6
Amount $70 $22 $20 $98 $50 $68

Questions:
I What are the odds against each horse?
I How much profit would a unit bet on winning horse 6

generate?
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Solution

I The total amount wagered on all horses is W = $328.
I The odds on horse i are calculated as the quotient of W

divided by the amount wagered on horse i .

328
70

= 4.69 ⇐⇒ odds 3.69 : 1

I The fraction of W bet on each horse is the bettors’
communal estimate of the probability of the horse winning.

Horse 1 2 3 4 5 6
Amount $70 $22 $20 $98 $50 $68

Odds 3.69 : 1 13.91 : 1 15.40 : 1 2.35 : 1 5.56 : 1 3.82 : 1
P (win) 0.2134 0.0671 0.0610 0.2988 0.1524 0.2073
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Example (1 of 2)

Suppose the odds against player A defeating player B in a
tennis match are 3 : 1 and the odds against player B defeating
player A are 1 : 1.

P (A wins) = 0.25 and P (B wins) = 0.5

Determine a betting strategy which guarantees a positive net
profit regardless of the outcome of the tennis match.



Example (2 of 2)

Betting strategy: wager $1 on player A and $2 on player B.

I If A wins: gain $3 on the first bet and lose $2 on the
second, net gain of $1.

I If B wins: lose $1 on the first bet and gain $2 on the
second, net gain of $1.

There is a positive payoff no matter which player wins.
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Real-life Arbitrage (1 of 2)

2006 Winter Olympics, Turin, Italy
I Online casino, SportingUSA.com (now out of business)

offerred 2.5 : 1 odds against Denmark winning medals.
I Online casino Bet365.com (still in business) offerred

1.875 : 1 odds Denmark would win at least one medal.

I Suppose a bettor had $1,000 to bet and wagered $500 at
each casino.

I Is it possible to guarantee a positive profit?
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Real-life Arbitrage (2 of 2)

I If Denmark does not win a medal the bettor receives

(500)(2.5 + 1) = $1,750.

I If Denmark wins at least one medal the bettor receives

(500)(1.875 + 1) = $1,437.50

I In the worst case, the bettor has invested $1,000 and
received $1,437.50.

I Denmark did not medal in 2006.
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Introduction to Linear Programming

Linear programming is a branch of mathematics concerned
with optimizing a linear function of several variables subject to
some set of constraints (linear equalities or inequalities) on the
variables.

The proof of the Arbitrage Theorem requires some familiarity
with linear programming.



Example (1 of 3)

A bank may invest its deposits in loans which earn 6% interest
per year and in the purchase of stocks which increase in value
by 13% per year. Any un-invested amount is simply held by the
bank. Suppose that government regulations require that the
bank invest no more than 60% of its deposits in stocks and
must keep 10% of its deposits on hand in the form of cash. As
a good business practice the bank wishes to devote at least
25% of its deposits to loans. Determine how the bank should
allocate its capital so as to maximize the total return on its
investments.



Example (2 of 3)

I Assume the bank can invest a fraction x in loans and
fraction y in stocks.

I The total return is therefore 0.06x + 0.13y .
I The constraints are:

I 0.25 ≤ x
I 0 ≤ y ≤ 0.60
I x + y ≤ 0.90
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Example (3 of 3)

Feasible Region

0.06x +0.13 y =k

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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0.8

1.0

x

y

Optimal return of k = 0.096 occurs when x = 0.3 and y = 0.6.



Decision Variables and Objective Functions

If c and x are vectors with n components each, the notation

cT x = c1x1 + c2x2 + · · ·+ cnxn

represents a weighted sum of the components of x with the
weights being the components of c.

Remarks:
I The components of x are sometimes called decision

variables.
I The weighted sum cT x is called an objective function.
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Constraints

Constraints on the decision variables will be expressed in the
form aT x ≤ z where a is a vector of n components and z is a
scalar.

All relationships can be expressed using ≤ .

aT x ≥ z ⇐⇒ (−a)T x ≤ −z
aT x = z ⇐⇒ aT x ≤ z and (−a)T x ≤ −z
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Vector Comparisons

We write u < v if ui < vi for i = 1,2, . . . ,n.

Similarly for
I u > v,
I u ≤ v, and
I u ≥ v.

If 0 denotes the zero vector then x ≥ 0 is an example of a sign
constraint.
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Optimization

When solving a linear program, we will
I optimize (either maximize or minimize) an objective

function,
I subject to one or more constraints.

Remark: the processes of maximizing and minimizing cT x are
equivalent in the sense that cT x is a maximum if and only if
(−c)T x is a minimum.
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Systems of Constraints

Suppose there are m inequality constraints:

aT
1 x ≤ b1

aT
2 x ≤ b2

...
aT

mx ≤ bm

we may express this in matrix form as

A x =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn




x1
x2
...

xn

 ≤


b1
b2
...

bm

 = b.



Forms of Linear Programs

There are at least three equivalent forms of linear programs:
Standard form: decision variables x ≥ 0, constraints A x = b.
Canonical form: decision variables x ≥ 0, constraints

A x = b ≥ 0.
Symmetric form: decision variables x ≥ 0, constraints A x ≤ b.

Remark: since any one of the three forms can be re-cast as
any of the other forms, we are free to work with the most
convenient formulation in any given context.
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Equivalence of Symmetric and Standard Forms

Given the symmetric linear program: maximize cT x subject to
A x ≤ b, introduce slack variables.

1. If x = 〈x1, x2, . . . , xn〉 augment with m slack variables
x̂n+j = bj −

∑n
i=1 ajixi for j = 1,2, . . . ,m to form decision

variable:

x = 〈x, x̂〉 = 〈x1, x2, . . . , xn, x̂n+1, x̂n+2, . . . , x̂n+m〉.

2. If A ∈ Rm×n then augment the columns of A with the m×m
identity matrix.

[
A Im

] [ x
x̂

]
= A x = b

3. Augment c with m zeros, then cT x = cT x.
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Equivalence of Standard and Symmetric Forms

Given the standard linear program: maximize cT x subject to
A x = b, introduce inequality constraints.

1. A x = b if and only if A x ≤ b and −A x ≤ −b.
2. Augment the rows of matrix A with the rows of matrix −A.[

A
−A

]
x ≤

[
b
−b

]
3. The weighted sum remains the same.
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General Linear Program

The most flexible statement of a linear program relaxes the
non-negativity of the decision variables and mixes the
equations and inequalities of the constraints.

A linear program of the form: maximize cT x subject to

A x ≤ b
Â x ≥ b̂
Ã x = b̃

is called a general linear program.

Remark: every standard, canonical, or symmetric linear
program is trivially a general linear program. The converse is
also true.



General Linear Program

The most flexible statement of a linear program relaxes the
non-negativity of the decision variables and mixes the
equations and inequalities of the constraints.

A linear program of the form: maximize cT x subject to

A x ≤ b
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Positive and Negative Parts

Definition
The positive part of real number x is denoted x+ and is

x+ =

{
x if x ≥ 0,
0 if x < 0.

The negative part of real number x is denoted x− and is

x− =

{
−x if x ≤ 0,
0 if x > 0.

Remark: this definition can be applied component-wise to real
vectors.



Equivalence of General and Symmetric Programs

Given a linear program in general form, we can construct a
symmetric linear program.

1. If the decision vector x ∈ Rn is unrestricted in sign, create
a new decision vector 〈x+,x−〉 ∈ R2n.

〈x+,x−〉 ≥ 0

2. Create a new vector of weights 〈c,−c〉.

〈c,−c〉T 〈x+,x−〉 = cT (x+ − x−) = cT x



Equivalence of General and Symmetric Programs

3. The system of constraints is re-written in inequality form:
A −A
−Â Â

Ã −Ã
−Ã Ã

[ x+

x−

]
≤


b
−b̂

b̃
−b̃

 .



Feasible Vectors and Cost Functions

Definition
Vector x is feasible if x ≥ 0 and A x ≤ b.

Definition
If c is a vector of n components, then we define

cT x = c1x1 + c2x2 + · · ·+ cnxn

to be the cost function.

Definition
Vector x is an optimal solution if x is feasible and maximizes
the cost function.
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Example (1 of 2)

Use the notion of the intersection of planes in R3 to minimize
5x1 + 4x2 + 8x3 subject to x1 + x2 + x3 = 1 and x is feasible.

Remark: this is a linear program stated in standard form.



Example (2 of 2)
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Constraint Set5 x 1 + 4 x 2 + 8 x 3 = k

The cost function has a minimum of 4 at x = 〈0,1,0〉.



Example (1 of 2)

Use the notion of the intersection of planes in R3 to minimize
5x1 + 4x2 + 8x3 subject to x1 + x2 + x3 ≤ 1 and x is feasible.

Remark: this linear program is stated in symmetric form.



Example (2 of 2)

If the constraints are x1 + x2 + x3 ≤ 1 and x feasible, then the
set of points where the solution must be found would resemble
a tetrahedron with vertices at (0,0,0), (1,0,0), (0,1,0), and
(0,0,1).

Feasible Region

5x1+4x2+8x3=k
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The cost function has
a minimum of 0 at
x = 〈0,0,0〉.



Dual Problems

For every linear programming problem of the type discussed
earlier, there is an associated problem known as its dual.
Henceforth the original problem will be known as the primal.
These paired optimization problems are related in the following
ways.

Primal: Maximize cT x subject to A x ≤ b and x ≥ 0.
Dual: Minimize bT y subject to AT y ≥ c and y ≥ 0.



Observations

Primal: Maximize cT x subject to Ax ≤ b and x ≥ 0.
Dual: Minimize bT y subject to AT y ≥ c and y ≥ 0.

Note:
1. the process of maximization in the primal is replaced with

the process of minimization in the dual,
2. the unknown of the dual is a vector y with m components,
3. the vector b moves from the constraint of the primal to the

cost function of the dual,
4. the vector c moves from the cost of the primal to the

constraint of the dual,
5. the constraints of the dual are inequalities and there are n

of them.



Equivalences and Duals (1 of 5)

General Linear Program

Maximize cT x subject to

A x ≤ b
Â x ≥ b̂
Ã x = b̃.

Symmetric Linear Program

Maximize 〈c,−c〉T 〈x+,x−〉
subject to

A −A
−Â Â

Ã −Ã
−Ã Ã

[ x+

x−

]
≤


b
−b̂

b̃
−b̃

 .

Now formulate the dual of the Symmetric Linear Program.
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Ã x = b̃.

Symmetric Linear Program

Maximize 〈c,−c〉T 〈x+,x−〉
subject to

A −A
−Â Â

Ã −Ã
−Ã Ã

[ x+

x−

]
≤


b
−b̂

b̃
−b̃

 .
Now formulate the dual of the Symmetric Linear Program.



Equivalences and Duals (2 of 5)

Dual: minimize 〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉 subject to

[
AT −ÂT ÃT −ÃT

−AT ÂT −ÃT ÃT

]
y
ŷ
ỹ+

ỹ−

 ≥ [ c
−c

]
,

with y ≥ 0, ŷ ≥ 0, ỹ+ ≥ 0, and ỹ− ≥ 0.



Equivalences and Duals (3 of 5)

Let ỹ = ỹ+ − ỹ− and then ỹ is unrestricted in sign and the dual
problem can be restated as

minimize 〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉 subject to[
AT −ÂT ÃT

−AT ÂT −ÃT

] y
ŷ
ỹ

 ≥ [ c
−c

]
.

Remark: the constraints are

AT y− ÂT ŷ + ÃT ỹ ≥ c
−AT y + ÂT ŷ− ÃT ỹ ≥ −c

which implies
AT y− ÂT ŷ + ÃT ỹ = c
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Let ỹ = ỹ+ − ỹ− and then ỹ is unrestricted in sign and the dual
problem can be restated as

minimize 〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉 subject to[
AT −ÂT ÃT

−AT ÂT −ÃT
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ỹ
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Remark: the constraints are

AT y− ÂT ŷ + ÃT ỹ ≥ c
−AT y + ÂT ŷ− ÃT ỹ ≥ −c
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Equivalences and Duals (4 of 5)

Symmetric Linear Program

Maximize 〈c,−c〉T 〈x+,x−〉
subject to

A −A
−Â Â

Ã −Ã
−Ã Ã

[ x+

x−

]
≤


b
−b̂

b̃
−b̃

 .

Dual Linear Program

Minimize
〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉
subject to

[
AT −ÂT ÃT

] y
ŷ
ỹ

 = c.



Equivalences and Duals (5 of 5)

Primal Linear Program

Maximize cT x subject to

A x ≤ b
Â x ≥ b̂
Ã x = b̃.

Dual Linear Program

Minimize
〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉
subject to

[
AT −ÂT ÃT

] y
ŷ
ỹ

 = c.

Remark: unrestricted decision variables in the primal (dual)
problem induce equality constraints in the dual (primal)
problem.
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〈b,−b̂, b̃,−b̃〉T 〈y, ŷ, ỹ+, ỹ−〉
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[
AT −ÂT ÃT

] y
ŷ
ỹ
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Dual of the Dual

Theorem
The dual of the dual is the primal.



Proof

Starting with the dual problem,

Minimize bT y subject to AT y ≥ c and y ≥ 0.

We can re-write the dual in general form,

Maximize (−b)T y subject to (−A)T y ≤ −c and y ≥ 0.

Now the dual of this problem (i.e., the dual of the dual) is

Minimize (−c)T x subject to ((−A)T )T x ≥ −b and x ≥ 0.

This problem is logically equivalent to the problem

Maximize cT x subject to A x ≤ b and x ≥ 0,

which is the primal problem.



Weak Duality Theorem

Theorem (Weak Duality Theorem)
If x and y are the feasible solutions of the primal and dual
problems respectively, then cT x ≤ bT y. If cT x = bT y then
these solutions are optimal for their respective problems.



Proof of Weak Duality Theorem
Feasible solutions to the primal and the dual problems must
satisfy the constraints A x ≤ b with x ≥ 0 (for the primal
problem) and AT y ≥ c with y ≥ 0 (for the dual). Multiply the
constraint in the dual by xT

xT AT y ≥ xT c ⇐⇒ cT x ≤ yT A x.

Multiply the constraint in the primal by yT

yT A x ≤ yT b = bT y.

Directions of the inequalities are preserved because x ≥ 0 and
y ≥ 0. Combining these last two inequalities produces

cT x ≤ yT Ax ≤ bT y.

Therefore we have cT x ≤ bT y. If cT x = bT y then x and y must
be optimal since no x can make cT x larger than bT y and no y
can make bT y smaller than cT x.



Example (1 of 2)

Primal: Maximize 4x1 + 3x2 subject to x1 + x2 ≤ 2 and
x1, x2 ≥ 0.
Dual: Minimize 2y1 subject to y1 ≥ 3, y1 ≥ 4, and y1 ≥ 0.



Example (2 of 2)
The minimum value of y1 subject to the constraints must be
y1 = 4. According to the Weak Duality Theorem then the
minimum of the cost function of the primal must be at least
2y1 = 8. Applying the level set argument as before, the largest
value of k for which the level set 4x1 + 3x2 = k intersects the
set of feasible points for the primal is k = 8.

Feasible Region

4x1 +3x2 =k
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Complementary Slackness

Theorem
Optimality in the primal and dual problems requires either
xj = 0 or (AT y)j = cj for each j = 1, . . . ,n.



Proof

When x and y are optimal for their respective problems then

bT y = yT A x = cT x
(yT A− cT )x = 0
(AT y− c)T x = 0.

Since x ≥ 0 and AT y− c ≥ 0 then vector x must be zero in
every component for which vector AT y− c is positive and vice
versa.



Example (1 of 4)

Primal: Maximize cT x = −3x1 + 2x2 − x3 + 3x4 subject to
x ≥ 0 and

[
1 1 −1 0
−2 0 1 1

]
x1
x2
x3
x4

 ≤ [ 5
3

]



Example (2 of 4)

Dual: Minimize bT y = 5y1 + 3y2 subject to
1 −2
1 0
−1 1
0 1

[ y1
y2

]
≥


−3
2
−1
3



Expressed as a system of inequalities, these constraints are

y1 − 2y2 ≥ −3
y1 ≥ 2

−y1 + y2 ≥ −1
y2 ≥ 3.



Example (2 of 4)

Dual: Minimize bT y = 5y1 + 3y2 subject to
1 −2
1 0
−1 1
0 1

[ y1
y2

]
≥


−3
2
−1
3


Expressed as a system of inequalities, these constraints are

y1 − 2y2 ≥ −3
y1 ≥ 2

−y1 + y2 ≥ −1
y2 ≥ 3.



Example (3 of 4)

1 2 3 4 5 6

2.0

2.5

3.0

3.5

4.0

4.5

5.0

y 1

y
2

Optimal solution is at (y1, y2) = (3,3) and has value 24.



Example (4 of 4)

Strict inequality is present in the second and third constraints
since

y1 = 3 > 2
−y1 + y2 = 0 > −1.

Thus the second and third components of x in the primal
problem must be zero. Therefore the primal can be recast as
Primal: Maximize −3x1 + 3x4 subject to x1 ≥ 0, x4 ≥ 0 and

[
1 1 −1 0
−2 0 1 1

]
x1
0
0
x4

 =

[
x1

−2x1 + x4

]
≤
[

5
3

]

Thus x1 = 5 and x4 = 13, the maximum of the cost function for
the primal is 24 and it occurs at (x1, x2, x3, x4) = (5,0,0,13).



Duality Theorem

Theorem (Duality Theorem)
One and only one of the following four cases can be true.

1. There exist optimal solutions for both the primal and dual
problems and the maximum of cT x equals the minimum of
bT y.

2. There exists no feasible solution to the primal problem and
the dual problem has feasible solutions for which the
minimum of bT y approaches −∞.

3. There exists no feasible solution to the dual problem and
the primal problem has feasible solutions for which the
maximum of cT x approaches∞.

4. Neither the primal nor the dual problem has a feasible
solution.



Farkas Alternative

Remark: before proving the Duality Theorem we must state a
lemma which will be used in the proof.

Lemma (Farkas Alternative)
Exactly one of the following two statements is true. Either

1. A x ≤ b has a solution x ≥ 0, or
2. AT y ≥ 0 with bT y < 0 has a solution y ≥ 0.



Proof (1 of 8)

Primal: Maximize cT x subject to A x ≤ b and x ≥ 0.
Dual: Minimize bT y subject to AT y ≥ c and y ≥ 0.

Assuming there are feasible solutions to each problem then we
can re-write the constraint of the dual as (−A)T y ≤ −c with
y ≥ 0. Thus according to the constraint on the primal, the
re-written constraint on the dual, and the conclusion of the
Weak Duality Theorem the following inequalities hold for
x,y ≥ 0.

A x ≤ b
(−A)T y ≤ −c

cT x− bT y ≤ 0

Remark: if equality holds in the last inequality, then x and y are
optimal solutions.



Proof (1 of 8)

Primal: Maximize cT x subject to A x ≤ b and x ≥ 0.
Dual: Minimize bT y subject to AT y ≥ c and y ≥ 0.

Assuming there are feasible solutions to each problem then we
can re-write the constraint of the dual as (−A)T y ≤ −c with
y ≥ 0. Thus according to the constraint on the primal, the
re-written constraint on the dual, and the conclusion of the
Weak Duality Theorem the following inequalities hold for
x,y ≥ 0.

A x ≤ b
(−A)T y ≤ −c

cT x− bT y ≤ 0

Remark: if equality holds in the last inequality, then x and y are
optimal solutions.



Proof (2 of 8)

These inequalities can be written in the block matrix form A 0
0 −AT

cT −bT

[ x
y

]
≤

 b
−c

0

 .
According to the Farkas Alternative Lemma either this
inequality has a solution 〈x,y〉 ≥ 0 or the alternative

[
AT 0 c

0 −A −b

] u
v
λ

 ≥ 0 and
[

bT −cT 0
]  u

v
λ

 < 0

has a solution 〈u,v, λ〉 ≥ 0.



Proof (3 of 8)

We may decompose this block matrix to derive the following
system of inequalities:

AT u + λc ≥ 0, −Av− λb ≥ 0, bT u− cT v < 0

with u ≥ 0, v ≥ 0, and λ ≥ 0. If λ > 0 then this system of
inequalities is equivalent to the following system.

A
(

1
λ

v
)
≤ −b

AT
(

1
λ

u
)
≥ −c

−bT
(

1
λ

u
)

> −cT
(

1
λ

v
)

Since u ≥ 0 and v ≥ 0 the vectors 1
λu ≥ 0 and 1

λv ≥ 0 as well.



Proof (4 of 8)

The first two inequalities form a primal problem and its dual.

Primal: A
(

1
λ

v
)
≤ −b

Dual: AT
(

1
λ

u
)
≥ −c

If we apply the Weak Duality Theorem, then it must be the case
that −bT ( 1

λu
)
≤ −cT ( 1

λv
)
, contradicting the inequality:

−bT
(

1
λ

u
)
> −cT

(
1
λ

v
)

Therefore we know that λ = 0.



Proof (5 of 8)

Thus the Farkas Alternative simplifies to the following system:

Av ≤ 0, AT u ≥ 0, and bT u < cT v

where u ≥ 0 and v ≥ 0. The last inequality implies that
bT u < 0 or cT v > 0. If bT u < 0 then the primal problem
A x ≤ b has no feasible solution x ≥ 0. To see this note that
together the inequalities x ≥ 0, Ax ≤ b, and bT u < 0 imply that

(A x)T ≤ bT

xT AT ≤ bT

xT
(

AT u
)
≤ bT u < 0.

However, x ≥ 0 and AT u ≥ 0 and thus xT (AT u
)
≥ 0, a

contradiction.



Proof (6 of 8)

We may conclude that if bT u < 0 then the primal problem has
no feasible solution.

If the dual problem also lacks a feasible solution then we are in
the fourth case of the theorem.

If the dual problem possesses a feasible solution y, then

AT y + ATλu = AT (y + λu) ≥ c.

Since y + λu ≥ 0 for all λ ≥ 0, then y + λu is a feasible solution
to the dual problem, and

lim
λ→∞

bT (y + λu) = bT y + lim
λ→∞

(λbT u) = −∞.



Proof (7 of 8)

Returning to the other half of our alternatively, namely cT v > 0
and assuming there exists a feasible solution to the dual
problem, then we have the following inequalities.

AT y ≥ c
yT A ≥ cT

−yT Av ≥ −cT v < 0

However, y ≥ 0 and −A v ≥ 0 and thus −yT Av ≥ 0, a
contradiction.

Therefore the dual problem has no feasible solution.



Proof (8 of 8)

If the primal problem has no feasible solution, then we are once
again in the fourth case of the theorem.

If the primal problem has a feasible solution x, then

Ax + Aλv = A(x + λv) ≤ b.

Since x + λv ≥ 0 for all λ ≥ 0, then x + λv is a feasible solution
to the primal problem, and

lim
λ→∞

cT (x + λv) = cT x + lim
λ→∞

(λcT v) =∞.



Fundamental Theorem of Finance (1 of 2)

Assumptions and background:
I Experiment has m possible outcomes numbered 1 through

m.
I We can place n wagers (numbered 1 through n) on the

outcomes.
I rij is the return for a unit bet on wager i ∈ {1,2, . . . ,n}

when the outcome of the experiment is j ∈ {1,2, . . . ,m}.
I Vector x = 〈x1, x2, . . . , xn〉 is called a betting strategy.

Component xi is the amount placed on wager i .

I Return from a betting strategy is
n∑

i=1

xi rij .



Fundamental Theorem of Finance (2 of 2)

Lemma
Exactly one of the following is true: either

1. there is a vector of probabilities p = 〈p1,p2, . . . ,pm〉 for
which

m∑
j=1

pj rij = 0, for each i = 1,2, . . . ,n, or

2. there is a betting strategy x = 〈x1, x2, . . . , xn〉 for which

n∑
i=1

xi rij > 0, for each j = 1,2, . . . ,m.



Proof

I Suppose the first statement is true.
I Let x = 〈x1, x2, . . . , xn〉 be a betting strategy.

m∑
j=1

pj

n∑
i=1

xi rji =
m∑

j=1

n∑
i=1

xipj rji =
n∑

i=1

xi

m∑
j=1

pj rji = 0

I Since each pj ≥ 0 and
∑m

j=1 pj = 1 then for some
j ∈ {1,2, . . . ,m} it must be the case that

n∑
i=1

xi rji ≤ 0

which implies the second statement is false.

I Suppose the second statement is true. If the first
statement is also true then the second statement is false.



Proof

I Suppose the first statement is true.
I Let x = 〈x1, x2, . . . , xn〉 be a betting strategy.

m∑
j=1

pj

n∑
i=1

xi rji =
m∑

j=1

n∑
i=1

xipj rji =
n∑

i=1

xi

m∑
j=1

pj rji = 0

I Since each pj ≥ 0 and
∑m

j=1 pj = 1 then for some
j ∈ {1,2, . . . ,m} it must be the case that

n∑
i=1

xi rji ≤ 0

which implies the second statement is false.
I Suppose the second statement is true. If the first

statement is also true then the second statement is false.



Interpretation

Considered as an expected value, the first statement of the
theorem

m∑
j=1

pj

n∑
i=1

xi rji = E

(
n∑

i=1

xi rji

)
= 0

implies that all betting strategies have an expected return of 0.



Risk Neutral Probability

I Suppose an person may invest in a collection of stocks Si

for i = 1,2, . . . ,n and save S0 at the simple interest rate r .
I After one unit of time the stocks will have values that are

described by one of m possible states ω1, ω2, . . . , ωm.
I The probability of achieving state ωj is pj .
I Let Si(0) be the price of the i th stock at time t = 0 and let

Si(ωj) be the price of the i th stock at time t = 1 under state
ωj .

If (1 + r)Si(0) =
m∑

j=1

pjSi(ωj) then p = 〈p1,p2, . . . ,pm〉 is called

a risk-neutral probability.
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a risk-neutral probability.



Arbitrage Theorem

Theorem (Arbitrage Theorem)
A risk-neutral probability exists if and only if there is no
arbitrage.

We will prove this theorem using the assumptions and notation
of the previous slide.



Proof (1 of 6)

I We may assume S0 = 1 and pj > 0 for future state ωj .
I Let yi be the number of shares of Si bought or sold at time

t = 0 and let y0 be the amount put in savings.
I Define vectors

S(·) = 〈S0(·),S1(·), . . . ,Sn(·)〉
y = 〈y0, y1, . . . , yn〉.

I Consider the dual linear program: minimize (S(0))T y
subject to the m constraints

(S(ω1))
T y ≥ 0

(S(ω2))
T y ≥ 0

...
(S(ωm))

T y ≥ 0.



Proof (2 of 6)

I The dual linear program is feasible since y = 0 satisfies all
the constraints.

I This also implies the minimum of the objective function is
non-positive.

I Suppose there exists a feasible solution y∗ for which

(S(0))T y∗ = c < 0

(this is the situation of type A arbitrage).
I For all M > 1 then M y∗ is feasible and

(S(0))T M y∗ = M c → −∞ as M →∞.

I There is no type A arbitrage if and only if the minimum of
the dual is 0.
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I The dual linear program is feasible since y = 0 satisfies all
the constraints.

I This also implies the minimum of the objective function is
non-positive.

I Suppose there exists a feasible solution y∗ for which

(S(0))T y∗ = c < 0

(this is the situation of type A arbitrage).
I For all M > 1 then M y∗ is feasible and

(S(0))T M y∗ = M c → −∞ as M →∞.
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the dual is 0.



Proof (3 of 6)

I If type B arbitrage exists then the minimum of the objective
function is 0 and there exists j ∈ {1,2, . . . ,m} for which
strict inequality holds:

(S(ωj))
T y > 0.

I There is no type B arbitrage if

(S(0))T y = 0
(S(ω1))

T y = 0
(S(ω2))

T y = 0
...

(S(ωm))
T y = 0.

I The corresponding primal problem has a trivial objective
function, that of maximizing 0T p ≡ 0 for p ≥ 0.



Proof (4 of 6)

I The system of constraints for the primal problem is

A p =


S0(ω1) S0(ω2) · · · S0(ωm)
S1(ω1) S1(ω2) · · · S1(ωm)

...
...

. . .
...

Sn(ω1) Sn(ω2) · · · Sn(ωm)




p1
p2
...

pm

 =


S0(0)
S1(0)

...
Sn(0)

 .
I In the absence of arbitrage, the Duality theorem implies

there is an optimal, feasible solution p∗ to the primal
problem for which the maximum of the objective function is
0.



Proof (5 of 6)

Consider the first constraint of the primal problem:

〈S0(ω1),S0(ω2), . . . ,S0(ωm)〉T 〈p∗1,p∗2, . . . ,p∗m〉 = S0(0)
(1 + r)〈1,1, . . . ,1〉T 〈p∗1,p∗2, . . . ,p∗m〉 = 1

(1 + r)
m∑

j=1

p∗j = 1

which implies (1 + r)p∗ is a risk-neutral probability.



Proof (6 of 6)

To prove the converse:
I Suppose a risk-neutral probability p > 0 exists.
I This implies the primal problem is feasible with a maximum

value of its objective function equal to 0.
I By the Duality Theorem there exists an optimal solution y

to the dual problem whose minimum is 0.

I Thus there is no type A arbitrage.
I Since p > 0 then by the Complementary Slackness

principle
(S(ωj))

T y = 0

for j = 1,2, . . . ,m. Hence there is no type B arbitrage.
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