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Objectives

In this lesson we will:
I describe a portfolio of investments as a betting strategy,
I define the concept of risk-neutral probability measure, and
I state and prove the Fundamental Theorem of Asset Pricing

(Arbitrage Theorem).



Fundamental Theorem of Finance (1 of 2)

Assumptions and background:
I Experiment has m possible outcomes numbered 1 through

m.
I We can place n wagers (numbered 1 through n) on the

outcomes.
I rij is the return for a unit bet on wager i ∈ {1,2, . . . ,n}

when the outcome of the experiment is j ∈ {1,2, . . . ,m}.
I Vector x = 〈x1, x2, . . . , xn〉 is called a betting strategy.

Component xi is the amount placed on wager i .

I Return from a betting strategy is
n∑

i=1

xi rij .



Example

An investor can invest in
I a risk-free savings account which will earn 20% simple

interest over the next year,
I a motion picture where the rate of return is given in the

following table.

Return Probability
High Success 3.0 0.3
Moderate Success 1.0 0.4
Failure 0.0 0.3

How much should the investor place in each investment?



Solution (1 of 2)

Let the total wealth of the investor be W > 0 and suppose x1 is
invested in the savings account and x2 is invested in the motion
picture.

This linear program can be expressed as maximizing

1.2x1 + x2(0.3 ∗ 3.0 + 0.4 ∗ 1.0 + 0.3 ∗ 0.0) = 1.2x1 + 1.3x2

subject to x1 + x2 = W .



Solution (2 of 2)
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The investor should place all his/her wealth in the motion
picture since it on average returns 30% simple interest.



Fundamental Theorem of Finance (2 of 2)

Lemma
Exactly one of the following is true: either

1. there is a vector of probabilities p = 〈p1,p2, . . . ,pm〉 for
which

m∑
j=1

pj rij = E (ri) = 0, for each i = 1,2, . . . ,n, or

2. there is a betting strategy x = 〈x1, x2, . . . , xn〉 for which

n∑
i=1

xi rij > 0, for each j = 1,2, . . . ,m.



Proof

I Suppose the first statement is true.
I Let x = 〈x1, x2, . . . , xn〉 be any betting strategy.

m∑
j=1

pj

n∑
i=1

xi rji =
m∑

j=1

n∑
i=1

xipj rji =
n∑

i=1

xi

m∑
j=1

pj rji = 0

I Since each pj ≥ 0 and
∑m

j=1 pj = 1 then for some
j ∈ {1,2, . . . ,m} it must be the case that

n∑
i=1

xi rji ≤ 0

which implies the second statement is false.

I Suppose the second statement is true. If the first
statement is also true then the second statement is false.



Proof

I Suppose the first statement is true.
I Let x = 〈x1, x2, . . . , xn〉 be any betting strategy.

m∑
j=1

pj

n∑
i=1

xi rji =
m∑

j=1

n∑
i=1

xipj rji =
n∑

i=1

xi

m∑
j=1

pj rji = 0

I Since each pj ≥ 0 and
∑m

j=1 pj = 1 then for some
j ∈ {1,2, . . . ,m} it must be the case that

n∑
i=1

xi rji ≤ 0

which implies the second statement is false.
I Suppose the second statement is true. If the first

statement is also true then the second statement is false.



Interpretation

Considered as an expected value, the first statement of the
theorem

m∑
j=1

pj

n∑
i=1

xi rji = E

(
n∑

i=1

xi rji

)
= 0

implies that all betting strategies have an expected return of 0.



Risk Neutral Probability

I Suppose an person may invest in a collection of stocks Si

for i = 1,2, . . . ,n and save S0 at the simple interest rate r .
I After one unit of time the stocks will have values that are

described by one of m possible states ω1, ω2, . . . , ωm.
I The probability of achieving state ωj is pj .
I Let Si(0) be the price of the i th stock at time t = 0 and let

Si(ωj) be the price of the i th stock at time t = 1 under state
ωj .

If (1 + r)Si(0) =
m∑

j=1

pjSi(ωj) then p = 〈p1,p2, . . . ,pm〉 is called

a risk-neutral probability measure.
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Arbitrage Theorem

Theorem (Arbitrage Theorem)
A risk-neutral probability measure exists if and only if there is
no arbitrage.

We will prove this theorem using the assumptions and notation
of the previous slide.



Proof (1 of 8)

I We may assume S0 = 1 and pj > 0 for future state ωj . (If a
future state ωk has corresponding probability pk = 0 then
we may ignore it.)

I Let yi be the number of shares of Si bought or sold at time
t = 0 and let y0 be the amount put in savings.

I Define vectors

S(·) = 〈S0(·),S1(·), . . . ,Sn(·)〉
y = 〈y0, y1, . . . , yn〉.

The expression (S(0))T y is the cost function of this
investment portfolio.



Proof (2 of 8)

Consider the linear program: minimize (S(0))T y subject to the
m constraints

(S(ω1))
T y = S0(ω1)y0 + S1(ω1)y1 + · · ·+ Sn(ω1)yn ≥ 0

(S(ω2))
T y = S0(ω2)y0 + S1(ω2)y1 + · · ·+ Sn(ω2)yn ≥ 0

...
(S(ωm))

T y = S0(ωm)y0 + S1(ωm)y1 + · · ·+ Sn(ωm)yn ≥ 0.

Remarks:
I The constraints imply that whatever the future state of the

stock market, the portfolio value is non-negative.
I There are no sign constraints on the components of y.



Proof (3 of 8)
I The linear program is feasible since y = 0 satisfies all the

constraints.
I This also implies the minimum of the objective function is

non-positive.

I Suppose there exists a feasible solution y∗ for which

(S(0))T y∗ = c < 0.

If the initial cost of the portfolio is negative, then there is an
initial positive cashflow to the investor. The constraints
imply there is no probability of loss of this initial cash flow
in the future. This is the situation of Type A arbitrage.

I For all M > 1 then M y∗ is feasible and

(S(0))T M y∗ = M c → −∞ as M →∞.

I There is no type A arbitrage if and only if the minimum of
the linear program is 0.
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Proof (4 of 8)

I If type B arbitrage exists then the minimum of the cost
function is 0 and there exists j ∈ {1,2, . . . ,m} for which
strict inequality holds:

(S(ωj))
T y > 0.

I If there is no type B arbitrage, then

(S(0))T y = 0
(S(ω1))

T y = 0
(S(ω2))

T y = 0
...

(S(ωm))
T y = 0.



Proof (5 of 8)

Let the decision variables in the primal problem be denoted
p = 〈p1,p2, . . . ,pm〉.

The primal problem is that of maximizing
〈0,0, . . . ,0〉T 〈p1,p2, . . . ,pm〉 = 0T p = 0 subject to

A p =


S0(ω1) S0(ω2) · · · S0(ωm)
S1(ω1) S1(ω2) · · · S1(ωm)

...
...

. . .
...

Sn(ω1) Sn(ω2) · · · Sn(ωm)




p1
p2
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Sn(0)

 .



Proof (6 of 8)

I The system of constraints for the primal problem is

A p =


S0(ω1) S0(ω2) · · · S0(ωm)
S1(ω1) S1(ω2) · · · S1(ωm)

...
...

. . .
...

Sn(ω1) Sn(ω2) · · · Sn(ωm)




p1
p2
...

pm

 =


S0(0)
S1(0)

...
Sn(0)

 .

I In the absence of arbitrage, the Duality theorem implies
there is an optimal, feasible solution p∗ to the primal
problem for which the maximum of the objective function is
0.



Proof (7 of 8)

Consider the first constraint of the primal problem:

〈S0(ω1),S0(ω2), . . . ,S0(ωm)〉T 〈p∗
1,p

∗
2, . . . ,p

∗
m〉 = S0(0)

(1 + r)〈1,1, . . . ,1〉T 〈p∗
1,p

∗
2, . . . ,p

∗
m〉 = 1

(1 + r)
m∑

j=1

p∗
j = 1

which implies (1 + r)p∗ is a risk-neutral probability measure.



Proof (8 of 8)

To prove the converse:
I Suppose a risk-neutral probability measure p > 0 exists.
I This implies the primal problem is feasible with a maximum

value of its objective function equal to 0.
I By the Duality Theorem there exists an optimal solution y

to the dual problem whose minimum is 0.

I Thus there is no type A arbitrage.
I Since p > 0 then by the Complementary Slackness

principle
(S(ωj))

T y = 0

for j = 1,2, . . . ,m. Hence there is no type B arbitrage.
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Homework

I Read Section 4.4
I Exercises: 16–20
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