Options
An Undergraduate Introduction to Financial Mathematics

J. Robert Buchanan

2016
Definition
An **option** is the right, but *not* the obligation, to buy or sell a security such as a stock for an agreed upon price at some time in the future.
Definitions and Terminology

Definition
An **option** is the right, but *not* the obligation, to buy or sell a security such as a stock for an agreed upon price at some time in the future.

strike price: agreed upon price for buying or selling.

expiry: deadline by which the option must be exercised (also known as **exercise time**, **strike time**, and **expiry date**).

call option: an option to buy a security (sometimes just called a **call**).

put option: an option to sell a security (a **put** for short).
Some Types of Options

European option: can only be exercised at expiry.

American option: can be exercised at or before expiry.
Some Types of Options

European option: can only be exercised at expiry.

American option: can be exercised at or before expiry.

Other types exist such as *Asian, Bermudan, look-back, etc.*

- Our objective is to determine a method for pricing the European-style options.
- Their values satisfy the **Black-Scholes partial differential equation**.
Notation

\(C^a \): value of an American-style call option
\(C^e \): value of a European-style call option
\(K \): strike price of an option
\(P^a \): value of an American-style put option
\(P^e \): value of a European-style put option
\(r \): continuously compounded, risk-free interest rate
\(\delta \): continuously compounded, dividend yield rate
\(S \): price of a share of a security
\(T \): exercise time or expiry of an option (sometimes called the strike time)
\(t \): current time, generally with \(0 \leq t \leq T \)
Payoff for a Call Option

A call option does not exhibit a positive payoff until the security price exceeds the strike price.

\[(S(T) - K)^+\]
Profit for a Call Option

The payoff of a call option minus its cost is the call’s profit.

\[(S(T) - K)^+ - C\]
Payoff for a Put Option

A put option does not exhibit a positive payoff until the strike price exceeds the security price.

\[(K - S(T))^+\]
Profit for a Put Option

The payoff of a put option minus its cost is the put’s profit.

\[(K - S(T))^+ - P\]
Theorem
\[C^a \geq C^e \text{ and } P^a \geq P^e. \]

An American form of an option will always be worth as much as the European version of the option (all other features being the same).
Assume: $C^a < C^e$.

- Sell the European option for C^e and purchase the American option for C^a.
- This generates cash flow $C^e - C^a > 0$ at time $t = 0$ which is invested at the risk-free rate r.
- If the European option holder chooses to exercise the option at expiry, the American option holder can also exercise.
- If the European option holder does not exercise, the American option holder can let the American option expire unused.
- At expiry the seller still holds $(C^e - C^a)e^{rT} > 0$.
Properties of Options (3 of 4)

Theorem
\[C^e \geq S - Ke^{-rT}. \]
Properties of Options (3 of 4)

Theorem
\[C^e \geq S - Ke^{-rT}. \]

Remark: this is equivalent to the inequality
\[C^e + Ke^{-rT} \geq S. \]

It can be interpreted as stating that the cost of a European call plus the present call of the strike is always at least the cost of the security.
Properties of Options (3 of 4)

Theorem
\[C^e \geq S - Ke^{-rT}. \]

Remark: this is equivalent to the inequality
\[C^e + Ke^{-rT} \geq S. \]

It can be interpreted as stating that the cost of a European call plus the present call of the strike is always at least the cost of the security.

Develop a similar inequality relating a put, the strike price, and the security.
Properties of Options (4 of 4)

Assume: $C^e < S - Ke^{-rT}$.

- Short the security for S and purchase the European call for C^e.
- This generates cash flow $S - C^e$ at time $t = 0$. This is invested at the continuously compounded risk-free rate r.
- At expiry the option holder has a risk-free investment worth $(S - C^e)e^{rT}$ and spends no more than K to close out the short position in the security.
- At expiry the option holder has $(S - C^e)e^{rT} - K > 0$ since this inequality is equivalent to the assumption that $C^e < S - Ke^{-rT}$.
- Therefore a risk-free positive profit can be had.
Theorem

For non-dividend paying stocks, if the European put and call have the same strike price and expiry, then

\[P^e + S = C^e + Ke^{-rT}. \]
Put-Call Parity Formula

Theorem
For non-dividend paying stocks, if the European put and call have the same strike price and expiry, then

\[P^e + S = C^e + Ke^{-rT}. \]

Put-Call Parity can be interpreted as stating that the cost of a European put plus the security equals the cost of the European call plus the present value of the strike.
Proof (1 of 2)

Assume: $P^e + S < C^e + Ke^{-rT}$.

- Borrow $P^e + S - C^e$ at the continuously compounded risk-free rate r.
- Purchase the European put option for P^e, the security for S, and sell the European call option for C^e.
- At expiry sell the security for at least K and pay back the loan with interest.
- At expiry this leaves the borrower with $K - (P^e + S - C^e)e^{rT} > 0$ since this inequality is equivalent to the assumption that $P^e + S < C^e + Ke^{-rT}$.
- Therefore a risk-free positive profit can be had.
Proof (2 of 2)

Assume: $P^e + S > C^e + Ke^{-rT}$.

- Short the security for S, sell the European put option for P^e, and purchase the European call option for C^e.

- At time $t = 0$ this generates a cash flow of $S + P^e - C^e > 0$. Invest this amount at the continuously compounded risk-free rate r.

- At expiry purchase the security for at most K and close out the short position.

- At expiry the short seller holds $(S + P^e - C^e)e^{rT} - K > 0$ since this inequality is equivalent to the assumption that $P^e + S > C^e + Ke^{-rT}$.
Effect of Dividends

- Suppose a corporation will pay a dividend to the shareholders at time t_d.
- The amount of the dividend will be $\delta S(t_d)$.
Effect of Dividends

- Suppose a corporation will pay a dividend to the shareholders at time t_d.
- The amount of the dividend will be $\delta S(t_d)$.
- Payment of the dividend decreases the total assets of the corporation by the total dividend paid.
Effect of Dividends

- Suppose a corporation will pay a dividend to the shareholders at time t_d.
- The amount of the dividend will be $\delta S(t_d)$.
- Payment of the dividend decreases the total assets of the corporation by the total dividend paid.
- Consider the one-sided limits:

$$\lim_{t \to t_d^-} S(t) = S(t_d^-)$$

$$\lim_{t \to t_d^+} S(t) = S(t_d^+)$$

These are the values of the corporation’s stock just before and just after the dividend is paid.
Effect of Dividends

- Suppose a corporation will pay a dividend to the shareholders at time t_d.
- The amount of the dividend will be $\delta S(t_d)$.
- Payment of the dividend decreases the total assets of the corporation by the total dividend paid.
- Consider the one-sided limits:
 \[
 \lim_{t \to t_d^-} S(t) = S(t_d^-) \\
 \lim_{t \to t_d^+} S(t) = S(t_d^+).
 \]
 These are the values of the corporation’s stock just before and just after the dividend is paid.
- In the absence of arbitrage,
 \[
 S(t_d^+) = (1 - \delta)S(t_d^-).
 \]
Theorem
If n dividend payments of the form $\delta S(t_i^-)$ will be made at times t_i^- for $i = 1, 2, \ldots, n$ then the Put-Call Parity Formula for discrete dividend payments can be expressed as

$$P^e + S(0) - \delta \sum_{i=1}^{n} S(t_i^-) e^{-rt_i} = C^e + Ke^{-rT}.$$
Theorem

If \(n \) dividend payments of the form \(\delta S(t_i^-) \) will be made at times \(t_i^- \) for \(i = 1, 2, \ldots, n \) then the Put-Call Parity Formula for discrete dividend payments can be expressed as

\[
P^e + S(0) - \delta \sum_{i=1}^{n} S(t_i^-) e^{-rt_i} = C^e + Ke^{-rT}.
\]

The value of the security is discounted by the total of the present values of the dividends paid.
Continuous Dividends

Theorem

For European options on securities which pay dividends at a continuous, constant dividend yield δ, the Put-Call Parity Formula takes on the form

$$P^e + S(0)e^{-\delta T} = C^e + Ke^{-rT}.$$
Call options can be thought of as insurance against a rise in the price of a security.

An investor does not know with certainty the value of the security at the strike time, so how much should be paid for the call?

Example

Suppose $S(0) = \$100$, at $t = T$.

$S(T) = \begin{cases}
\$200 & \text{with probability } p, \\
\$50 & \text{with probability } 1 - p.
\end{cases}$

An investor can purchase a European call option whose value is C. The exercise time and strike price of the option are respectively $T = 1$ and $\$150$. In the absence of arbitrage what is the value of C?
Binary Model

- Call options can be thought of as insurance against a rise in the price of a security.
- An investor does not know with certainty the value of the security at the strike time, so how much should be paid for the call?

Example
Suppose $S(0) = $100, at $t = T$

$$S(T) = \begin{cases}
$200 & \text{with probability } p, \\
$50 & \text{with probability } 1 - p.
\end{cases}$$

An investor can purchase a European call option whose value is C. The exercise time and strike price of the option are respectively $T = 1$ and 150. In the absence of arbitrage what is the value of C?
Present Value, Arbitrage-free Setting

- Since two distinct times \((t = 0 \text{ and } t = 1)\) are involved we must find the present values of all quantities being compared.
- Assume the simple interest rate for the interval \(0 \leq t \leq 1\) is \(r\).
- In the absence of arbitrage, there should be no expected profit from either purchasing the security or the call option.
Purchase the Stock

Suppose an investor purchases the security.

- Initial cash flow: $-100.
- At time $t = 1$, the payoff is $\text{payoff} = \begin{cases} -100 + \frac{200}{1 + r} & \text{with probability } p, \\ -100 + \frac{50}{1 + r} & \text{with probability } 1 - p. \end{cases}

If the expected value of the payoff is 0, then

$$0 = p \left[-100 + \frac{200}{1 + r}\right] + (1 - p) \left[-100 + \frac{50}{1 + r}\right]$$

$$p = \frac{2}{3}r + \frac{1}{3}.$$
Purchase the Stock

Suppose an investor purchases the security.

- Initial cash flow: −$100.
Suppose an investor purchases the security.

- Initial cash flow: \(-$100\).
- At \(t = 1\), the payoff is

\[
\text{payoff} = \begin{cases}
-100 + \frac{200}{1+r} & \text{with probability } p, \\
-100 + \frac{50}{1+r} & \text{with probability } 1 - p.
\end{cases}
\]
Purchase the Stock

Suppose an investor purchases the security.

- Initial cash flow: -100.
- At $t = 1$, the payoff is

 \[
 \text{payoff} = \begin{cases}
 -100 + \frac{200}{1 + r} & \text{with probability } p, \\
 -100 + \frac{50}{1 + r} & \text{with probability } 1 - p.
 \end{cases}
 \]

- If the expected value of the payoff is 0, then

 \[
 0 = p \left(-100 + \frac{200}{1 + r} \right) + (1 - p) \left(-100 + \frac{50}{1 + r} \right)
 \]

 \[
 p = \frac{2r + 1}{3}.
 \]
Purchase the Option

Suppose the investor purchases the call option.

Initial cash flow: $-C$.

At $t=T$, the payoff is:

\[\text{payoff} = \begin{cases}
-C + \left(\frac{200 - 150}{1 + r}\right) & \text{with probability } p, \\
-C + \left(\frac{50 - 150}{1 + r}\right) + \left(\frac{1}{1 + r}\right) & \text{with probability } 1 - p.
\end{cases}\]

If the expected value of the payoff is 0, then:

\[0 = p \left[-C + \left(\frac{200 - 150}{1 + r}\right)\right] + (1 - p) \left[-C + \left(\frac{50 - 150}{1 + r}\right) + \left(\frac{1}{1 + r}\right)\right].\]

\[C = 50 \left(\frac{2}{3} r + \frac{1}{3}\right).\]
Purchase the Option

Suppose the investor purchases the call option.

- Initial cash flow: \(-C\).
Purchase the Option

Suppose the investor purchases the call option.

- Initial cash flow: $-C$.
- At $t = T$, the payoff is

$$\text{payoff} = \begin{cases}
-C + (\$200 - \$150)/(1 + r) & \text{with probability } p, \\
-C + (\$50 - \$150)^+/ (1 + r) & \text{with probability } 1 - p.
\end{cases}$$
Purchase the Option

Suppose the investor purchases the call option.

- Initial cash flow: \(-C\).
- At \(t = T\), the payoff is

\[
\text{payoff} = \begin{cases}
 -C + (200 - 150)/(1 + r) & \text{with probability } p, \\
 -C + (50 - 150)/(1 + r) & \text{with probability } 1 - p.
\end{cases}
\]

- If the expected value of the payoff is 0, then

\[
0 = p \left[-C + \frac{200 - 150}{1 + r} \right] + (1 - p) \left[-C + \frac{50 - 150}{1 + r} \right] \\
C = \frac{50(2r + 1)}{3(r + 1)}.
\]
Parametric Plot of \((p(r), C(r))\)

If \((p(r), C(r)) = \left(\frac{2r + 1}{3}, \frac{50(2r + 1)}{3(r + 1)} \right)\) then as the probability of the security reaching $200 at \(T = 1\) increases, so does the cost of the option.
Example (1 of 3)

- Suppose the current value of the stock is \(S(0) = $100 \) and at time \(T = 1 \)

\[
S(1) = \begin{cases}
$150 & \text{with probability } p = 0.45, \\
$75 & \text{with probability } 1 - p = 0.55.
\end{cases}
\]

- Suppose further that the risk-free interest rate is \(r = 8.388\% \).

- A European call option with a strike price of $125 can be purchased for $10 (note the arbitrage-free price is $10.3448).
Example (1 of 3)

- Suppose the current value of the stock is $S(0) = $100 and at time $T = 1$

 \[
 S(1) = \begin{cases}
 \$150 & \text{with probability } p = 0.45, \\
 \$75 & \text{with probability } 1 - p = 0.55.
 \end{cases}
 \]

- Suppose further that the risk-free interest rate is $r = 8.388\%$.

- A European call option with a strike price of 125 can be purchased for 10 (note the arbitrage-free price is 10.3448).

- Design an investment scheme which guarantees a positive profit.
Solution: Borrow funds to take a position of x shares of the stock and y call options (x and y can be positive or negative).

- At $t = 0$, the portfolio is worth $100x + 10y$.
- At $t = T$, the investor owes $(100x + 10y)e^{0.08338}$.
- If $S(1) = 150$, the portfolio generates a cash flow of
 \[150x + (150 - 125)y = 150x + 25y. \]
- If $S(1) = 75$, the portfolio generates a cash flow of $75x$.
Example (3 of 3)

A positive profit is guaranteed in the region where

\[150x + 25y > (100x + 10y)e^{0.08338} \]
\[75x > (100x + 10y)e^{0.08338} \]

which implies \(3x + y > 0 \).
Black-Scholes Equation

We now turn our attention to mathematically modeling the value of a European call option.

- Suppose a stock obeys an Itô process of the form:
 \[dS = \mu S \, dt + \sigma S \, dW(t) \]

- An investor will create a portfolio \(Y \), consisting of a short position in a European call option and a long position of \(\Delta \) shares of the stock.
 \[Y = F(S, t) = C^e(S, t) - (\Delta)S \]
We now turn our attention to mathematically modeling the value of a European call option.

- Suppose a stock obeys an Itô process of the form:

 \[dS = \mu S \, dt + \sigma S \, dW(t) \]

- An investor will create a portfolio \(Y \), consisting of a short position in a European call option and a long position of \(\Delta \) shares of the stock.

 \[Y = F(S, t) = C^e(S, t) - (\Delta)S \]

- Use Itô’s lemma to find the stochastic process followed by \(Y \).
Itô Process for dY

$$
\begin{align*}
 dY &= \left(\mu SY_S + \frac{1}{2} \sigma^2 S^2 Y_{SS} + Y_t \right) \, dt + (\sigma SY_S) \, dW(t) \\
 &= \left(\mu S \left[\frac{\partial C^e}{\partial S} - \Delta \right] + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} + \frac{\partial C^e}{\partial t} \right) \, dt \\
 &\quad + \sigma S \left(\frac{\partial C^e}{\partial S} - \Delta \right) \, dW(t)
\end{align*}
$$

Note: the process becomes deterministic if $\Delta = \frac{\partial C^e}{\partial S}$.
Itô Process for \(dY \)

\[
\begin{align*}
 dY &= \left(\mu SY_S + \frac{1}{2} \sigma^2 S^2 Y_{SS} + Y_t \right) \, dt + (\sigma SY_S) \, dW(t) \\
 &= \left(\mu S \left[\frac{\partial C^e}{\partial S} - \Delta \right] + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} + \frac{\partial C^e}{\partial t} \right) \, dt \\
 &\quad + \sigma S \left(\frac{\partial C^e}{\partial S} - \Delta \right) \, dW(t)
\end{align*}
\]

Note: the process becomes deterministic if \(\Delta = \frac{\partial C^e}{\partial S} \).

\[
 dY = \left(\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} + \frac{\partial C^e}{\partial t} \right) \, dt
\]
No Arbitrage Assumption

The payoff from the portfolio should be the same as that generated by investing an equivalent amount of money to \(Y \) in savings earning interest compounded continuously at rate \(r \).

\[
dY = rY \, dt \\
= r(C^e - (\Delta)S) \, dt \\
= r \left(C^e - S \frac{\partial C^e}{\partial S} \right) \, dt
\]
No Arbitrage Assumption

The payoff from the portfolio should be the same as that generated by investing an equivalent amount of money to Y in savings earning interest compounded continuously at rate r.

$$dY = rY \, dt$$
$$= r(C^e - (\Delta)S) \, dt$$
$$= r \left(C^e - S \frac{\partial C^e}{\partial S} \right) \, dt$$

Recall from Itô’s lemma that

$$dY = \left(\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} + \frac{\partial C^e}{\partial t} \right) \, dt.$$
No Arbitrage Assumption

The payoff from the portfolio should be the same as that generated by investing an equivalent amount of money to Y in savings earning interest compounded continuously at rate r.

\[
\begin{align*}
 dY &= rY \, dt \\
 &= r(C^e - (\Delta)S) \, dt \\
 &= r \left(C^e - S \frac{\partial C^e}{\partial S} \right) dt
\end{align*}
\]

Recall from Itô’s lemma that

\[
\begin{align*}
 dY &= \left(\frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} + \frac{\partial C^e}{\partial t} \right) dt.
\end{align*}
\]

Equating the two expressions for dY yields the **Black-Scholes partial differential equation**

\[
 r \, C^e = \frac{\partial C^e}{\partial t} + r \, S \frac{\partial C^e}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2}.
\]
In order to solve the Black-Scholes PDE we must have some boundary and final conditions.

At expiry the call option is worth \((S(T) - K)\) + , so \(C_e(S(T), T) = (S(T) - K)\) + , this is the final condition.

The stock will have a value in the interval \([0, \infty)\). The boundary at \(S = 0\) is absorbing, so if there is a time \(t^* \geq 0\) such that \(S(t^*) = 0\), then \(S(t) = 0\) for all \(t \geq t^*\). In this case the option will never be exercised and is worthless. Thus \(C_e(0, t) = 0\), which is the boundary condition at \(S = 0\).
Final and Boundary Conditions (1 of 2)

In order to solve the Black-Scholes PDE we must have some boundary and final conditions.

At expiry the call option is worth \((S(T) - K)^+\), so

\[C^e(S, T) = (S(T) - K)^+ , \]

this is the final condition.
In order to solve the Black-Scholes PDE we must have some boundary and final conditions.

At expiry the call option is worth $(S(T) - K)^+$, so

$$C^e(S, T) = (S(T) - K)^+,$$

this is the final condition.

The stock will have a value in the interval $[0, \infty)$. The boundary at $S = 0$ is absorbing, so if there is a time $t^* \geq 0$ such that $S(t^*) = 0$, then $S(t) = 0$ for all $t \geq t^*$. In this case the option will never be exercised and is worthless. Thus

$$C^e(0, t) = 0,$$

which is the boundary condition at $S = 0$.
From the Put-Call Parity Formula:

\[C^e = P^e + S - Ke^{-rT} \]

\[\lim_{S \to \infty} C^e = \lim_{S \to \infty} P^e + S - Ke^{-rT} \]

\[C^e \to S - Ke^{-rT} \text{ as } S \to \infty. \]
From the Put-Call Parity Formula:

\[C^e = P^e + S - Ke^{-rT} \]

\[\lim_{S \to \infty} C^e = \lim_{S \to \infty} P^e + S - Ke^{-rT} \]

\[C^e \to S - Ke^{-rT} \text{ as } S \to \infty. \]

As the security unbounded in value:

- a put option (right to sell at a finite price) becomes worthless, and
- the call option is worth the difference between the security price and the present value of the strike.
Initial Boundary Value Problem

For \((S, t)\) in \([0, \infty) \times [0, T]\),

\[
\begin{align*}
 rC^e &= \frac{\partial C^e}{\partial t} + rS \frac{\partial C^e}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2}, \\
 C^e(S, T) &= (S(T) - K)^+ \quad \text{for } S > 0, \\
 C^e(0, t) &= 0 \quad \text{for } 0 \leq t < T, \\
 C^e(S, t) &= S - Ke^{-r(T-t)} \quad \text{as } S \to \infty.
\end{align*}
\]
Initial Boundary Value Problem

For \((S, t)\) in \([0, \infty) \times [0, T]\),

\[
\begin{align*}
 rC^e &= \frac{\partial C^e}{\partial t} + rS \frac{\partial C^e}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 C^e}{\partial S^2} \\
 C^e(S, T) &= (S(T) - K)^+ \quad \text{for } S > 0, \\
 C^e(0, t) &= 0 \quad \text{for } 0 \leq t < T, \\
 C^e(S, t) &= S - Ke^{-r(T-t)} \quad \text{as } S \to \infty.
\end{align*}
\]

The solution of this IBVP is the subject of the next chapter.
Definition
A trading strategy involving two or more options of the same type on the same stock is called a spread.
Spread

Definition
A trading strategy involving two or more options of the same type on the same stock is called a **spread**.

Definition
A long call position with a strike price of K_1 and a short call position with a strike price of $K_2 > K_1$ is called a **bull spread**.

Remark: We are assuming the underlying stock is the same and the expiry of the two calls is the same.
Bull Spread (1 of 2)

- Since $K_2 > K_1$ then $C_2 < C_1$ (why?).
- Initial outlay of capital in amount $C_1 - C_2 > 0$.
- Payoff of long call $(S(T) - K_1)^+$.
- Payoff of short call $-(S(T) - K_2)^+$.

<table>
<thead>
<tr>
<th></th>
<th>Long Call</th>
<th>Short Call</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T)$</td>
<td>K_1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$K_1 < S(T) < K_2$</td>
<td>$S(T) - K_1$</td>
<td>0</td>
<td>$(S(T) - K_1)^+$</td>
</tr>
<tr>
<td>$S(T) \geq K_2$</td>
<td>0</td>
<td>$K_2 - K_1$</td>
<td>$K_2 - K_1$</td>
</tr>
</tbody>
</table>
Since \(K_2 > K_1 \) then \(C_2 < C_1 \) (why?).

Initial outlay of capital in amount \(C_1 - C_2 > 0 \).

Payoff of long call \((S(T) - K_1)^+\).

Payoff of short call \(-(S(T) - K_2)^+\).

<table>
<thead>
<tr>
<th>(S(T))</th>
<th>Long Call Payoff</th>
<th>Short Call Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S(T) \leq K_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(K_1 < S(T) < K_2)</td>
<td>(S(T) - K_1)</td>
<td>0</td>
<td>(S(T) - K_1)</td>
</tr>
<tr>
<td>(K_2 \leq S(T))</td>
<td>(S(T) - K_1)</td>
<td>(K_2 - S(T))</td>
<td>(K_2 - K_1)</td>
</tr>
</tbody>
</table>
Bull Spread (2 of 2)
Example: Bull Spread

Example
Suppose we create a bull spread purchasing a call option with strike price $115 and selling a call option with strike price $130. Suppose that $C(115) = 5$ and $C(130) = 3$. Find the payoff and net profit if at expiry,

- $S = 110$
- $S = 115$
- $S = 125$
- $S = 130$
- $S = 135$.
Bull Spread with Puts (1 of 2)

Suppose an investor has a long position in a put with strike price K_1 and a short position in a put with strike price $K_2 > K_1$.

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Long Put Payoff</th>
<th>Short Put Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K_1$</td>
<td>$K_1 - S(T)$</td>
<td>$S(T) - K_2$</td>
<td>$K_1 - K_2$</td>
</tr>
<tr>
<td>$K_1 < S(T) < K_2$</td>
<td>0</td>
<td>$S(T) - K_2$</td>
<td>$S(T) - K_2$</td>
</tr>
<tr>
<td>$K_2 \leq S(T)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bull Spread with Puts (2 of 2)

Payoff/Profit

$P_2 - P_1$

K_1

K_2

$S(T)$
Example: Bull Spread

Example
Suppose we create a bull spread purchasing a put option with strike price $95 and selling a put option with strike price $105. Suppose that $P(95) = 5$ and $P(105) = 8$. Find the payoff and net profit if at expiry,

- $S = 90$
- $S = 95$
- $S = 100$
- $S = 105$
- $S = 110$.
Bear Spreads

Definition
A short call position with a strike price of K_1 and a long call position with a strike price of $K_2 > K_1$ is called a bear spread.

Remarks:
- We are assuming the underlying stock is the same and the expiry of the two calls is the same.
- The positions in the bear spread are opposite those of the bull spread.
Bear Spread (1 of 2)

- Since $K_2 > K_1$ then $C_2 < C_1$.
- Initial income of capital in amount $C_1 - C_2 > 0$.
- Payoff of long call $(S(T) - K_2)^+$.
- Payoff of short call $-(S(T) - K_1)^+$.

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
& Long Call & Short Call & Total Payoff \\
\hline
Payoff & $S(T)$ & K_1 & $K_1 - S(T)$ \\
\hline
Payoff & K_1 & $(S(T) - K_1)^+$ & K_1 \\
\hline
Payoff & $S(T)$ & K_2 & $K_2 - S(T)$ \\
\hline
\end{tabular}
\end{center}
Since $K_2 > K_1$ then $C_2 < C_1$.

Initial income of capital in amount $C_1 - C_2 > 0$.

Payoff of long call $(S(T) - K_2)^+.$

Payoff of short call $-(S(T) - K_1)^+.$

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Long Call Payoff</th>
<th>Short Call Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$K_1 < S(T) < K_2$</td>
<td>0</td>
<td>$K_1 - S(T)$</td>
<td>$K_1 - S(T)$</td>
</tr>
<tr>
<td>$K_2 \leq S(T)$</td>
<td>$S(T) - K_2$</td>
<td>$K_1 - S(T)$</td>
<td>$K_1 - K_2$</td>
</tr>
</tbody>
</table>
Bear Spread (2 of 2)

Payoff/Profit

$C_1 - C_2$

$S(T)$

K_1

K_2

K_1 to K_2
Example: Bear Spread

Example
Suppose we create a bear spread purchasing a call option with strike price $150 and selling a call option with strike price $125. Suppose that $C(150) = 5$ and $C(125) = 10$. Find the payoff and net profit if at expiry,

- $S = 120$
- $S = 125$
- $S = 150$
- $S = 150$
- $S = 160$.
Suppose an investor has a short position in a put with strike price K_1 and a long position in a put with strike price $K_2 > K_1$.

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Long Put Payoff</th>
<th>Short Put Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K_1$</td>
<td>$K_2 - S(T)$</td>
<td>$S(T) - K_1$</td>
<td>$K_2 - K_1$</td>
</tr>
<tr>
<td>$K_1 < S(T) < K_2$</td>
<td>$K_2 - S(T)$</td>
<td>0</td>
<td>$K_2 - S(T)$</td>
</tr>
<tr>
<td>$K_2 \leq S(T)$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Bear Spread with Puts (2 of 2)

Payoff/Profit

\[P_2 - P_1 \]

\[S(T) \]

\[K_1 \]

\[K_2 \]
Example: Bear Spread

Example
Suppose we create a bear spread selling a put option with strike price $50 and purchasing a put option with strike price $60. Suppose that $P(50) = 3$ and $P(60) = 5$. Find the payoff and net profit if at expiry,

- $S = 45$
- $S = 50$
- $S = 55$
- $S = 60$
- $S = 65$.
Butterfly Spreads

Definition
A long call position with a strike price of K_1, a long call position with a strike price of $K_3 > K_1$, and a short position in two calls with strike price $K_2 = (K_1 + K_3)/2$ is called a butterfly spread.

Remark: We are assuming the underlying stock is the same and the expiry of the three calls is the same.
Butterfly Spread

- Note that $K_3 > K_2 > K_1$.
- Payoffs of long calls are $(S(T) - K_1)^+$ and $(S(T) - K_3)^+$.
- Payoff of two short calls $-2(S(T) - K_2)^+$.

<table>
<thead>
<tr>
<th>Payoff 1st</th>
<th>Payoff 2nd</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T)$</td>
<td>$S(T)$</td>
<td>$S(T)$</td>
</tr>
<tr>
<td>K_1</td>
<td>$S(T)$</td>
<td>$S(T)$</td>
</tr>
<tr>
<td>$S(T)$</td>
<td>K_3</td>
<td>$S(T)$</td>
</tr>
<tr>
<td>K_2</td>
<td>$S(T)$</td>
<td>$S(T)$</td>
</tr>
<tr>
<td>$S(T)$</td>
<td>K_3</td>
<td>$S(T)$</td>
</tr>
</tbody>
</table>
Butterfly Spread

- Note that $K_3 > K_2 > K_1$.
- Payoffs of long calls are $(S(T) - K_1)^+$ and $(S(T) - K_3)^+$.
- Payoff of two short calls $-2(S(T) - K_2)^+$.

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Payoff 1st Long Call</th>
<th>Payoff 2nd Long Call</th>
<th>Payoff Short Calls</th>
<th>Payoff Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$K_1 < S(T) < K_2$</td>
<td>$S(T) - K_1$</td>
<td>0</td>
<td>0</td>
<td>$S(T) - K_1$</td>
</tr>
<tr>
<td>$K_2 \leq S(T) < K_3$</td>
<td>$S(T) - K_1$</td>
<td>0</td>
<td>$-2(S(T) - K_2)$</td>
<td>$K_3 - S(T)$</td>
</tr>
<tr>
<td>$K_3 \leq S(T)$</td>
<td>$S(T) - K_1$</td>
<td>$S(T) - K_3$</td>
<td>$-2(S(T) - K_2)$</td>
<td>0</td>
</tr>
</tbody>
</table>
Butterfly Spread with Calls

Payoff/Profit

\[C_1 - 2C_2 + C_3 \]

\[K_1, K_2, K_3 \]

\[S(T) \]
Example: Butterfly Spread

Example
Suppose we create a butterfly spread purchasing a call options with strike prices $150 and $200 selling 2 call options with strike price $175. Suppose that $C(150) = 60$, $C(175) = 35$, and $C(200) = 10$. Find the payoff and net profit if at expiry,

- $S = 100$
- $S = 150$
- $S = 175$
- $S = 200$
- $S = 250$.
Straddles

Definition
Simultaneous long position in a call and a put is called a **long straddle**. Simultaneous short position in a call and a put is called a **short straddle**.

Remarks: We will assume
- the underlying stock is the same for both options,
- the strike prices are the same,
- the expiry dates are the same.
Suppose an investor has a long straddle with strike prices K.

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Put Payoff</th>
<th>Call Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K$</td>
<td>$K - S(T)$</td>
<td>0</td>
<td>$K - S(T)$</td>
</tr>
<tr>
<td>$K < S(T)$</td>
<td>0</td>
<td>$S(T) - K$</td>
<td>$S(T) - K$</td>
</tr>
</tbody>
</table>
Long Straddle (2 of 2)

Payoff/Profit

\[\text{Payoff} = (K-H) + \text{Profit} \]

\[\text{Profit} = \begin{cases} +P & \text{if } S(T) > K+H \text{ or } S(T) < K-H \\ -P & \text{otherwise} \end{cases} \]
Example: Long Straddle

Example
Suppose we create a long straddle purchasing call and put options with strike prices of $150. Suppose that $C(150) = 20$ and $P(150) = 10$. Find the payoff and net profit if at expiry,

- $S = 100$
- $S = 140$
- $S = 150$
- $S = 160$
- $S = 200$.
Definition
A **long strangle** is a simultaneous long position in a call and a put. A **short strangle** is a simultaneous short position in a call and a put.

Remarks: We will assume
- the underlying stock is the same for both options,
- the expiry dates are the same,
- the strike prices may be different (this characteristic distinguishes a strangle from a straddle).
Suppose an investor has a long strangle with strike prices K_P for the put and $K_C > K_P$ for the call.

<table>
<thead>
<tr>
<th>$S(T)$</th>
<th>Put Payoff</th>
<th>Call Payoff</th>
<th>Total Payoff</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S(T) \leq K_P$</td>
<td>$K_P - S(T)$</td>
<td>0</td>
<td>$K_P - S(T)$</td>
</tr>
<tr>
<td>$K_P < S(T) < K_C$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$K_C < S(T)$</td>
<td>0</td>
<td>$S(T) - K_C$</td>
<td>$S(T) - K_C$</td>
</tr>
</tbody>
</table>
Example: Long Strangle

Example
Suppose we create a long strangle purchasing a call option with a strike price of $150 and a put option with a strike price of $130. Suppose that $C(150) = 20$ and $P(130) = 10$. Find the payoff and net profit if at expiry,

- $S = 100$
- $S = 140$
- $S = 150$
- $S = 160$
- $S = 200$.
These slides are adapted from the textbook,

author: J. Robert Buchanan

address: 27 Warren St., Suite 401–402, Hackensack, NJ 07601

ISBN: 978-9814407441