Increasing and Decreasing Functions
MATH 161 Calculus I

J. Robert Buchanan
Department of Mathematics
Fall 2017
Previously we learned that
generally when a local extremum occurs, it occurs at a **critical number** \((f'(c) = 0 \text{ or } f'(c) \text{ is undefined})\), but
Previously we learned that

- when a local extremum occurs, it occurs at a **critical number** \(f'(c) = 0 \) or \(f'(c) \) is undefined, but
- not every critical number is a local extremum.
Example

If $f(x) = x^3$, $x = 0$ is a critical number but $f(0) = 0$ is neither a local minimum nor local maximum.
Increasing and Decreasing Functions

To classify critical numbers as local extrema we need the following concepts:

Definition
A function f is **strictly increasing** on an interval I if for every $x_1, x_2 \in I$ with $x_1 < x_2$ we have $f(x_1) < f(x_2)$ [in other words, $f(x)$ gets larger as x gets larger].

A function f is **strictly decreasing** on an interval I if for every $x_1, x_2 \in I$ with $x_1 < x_2$ we have $f(x_1) > f(x_2)$ [in other words, $f(x)$ gets smaller as x gets larger].
Increasing/Decreasing and Derivative (1 of 2)

Consider the graph of f below and think about the relationship between the derivative of f and the increasing and decreasing behavior of f.

![Graph of f showing increasing and decreasing intervals.](image)
Theorem
Suppose that \(f \) is differentiable on an interval \(I \).

1. If \(f'(x) > 0 \) for all \(x \in I \) then \(f \) is increasing on \(I \).
2. If \(f'(x) < 0 \) for all \(x \in I \) then \(f \) is decreasing on \(I \).

Proof.
Let \(x_1, x_2 \in I \) with \(x_1 < x_2 \) and use the MVT. \(\square \)
Examples

Find the intervals where the following functions are increasing and decreasing.

- $f(x) = x^3 + 2x^2 + 3$
- $g(x) = \ln(x^2 - 4)$
- $h(x) = \frac{x}{1 + x^4}$

Use the increasing/decreasing information to sketch graphs of the functions.
Solution: \(f(x) = x^3 + 2x^2 + 3 \)

\[
\begin{align*}
 f'(x) &= 3x^2 + 4x \\
 0 &= x(3x + 4) \\
 x &= 0 \quad \text{or} \quad x = -\frac{4}{3}
\end{align*}
\]

Function \(f(x) \) is decreasing on \((-4/3, 0)\) and increasing on \((-\infty, -4/3) \cup (0, \infty)\).
Solution: $g(x) = \ln(x^2 - 4)$

The domain of $g(x)$ is $(-\infty, -2) \cup (2, \infty)$.

$$g'(x) = \frac{2x}{x^2 - 4}$$

Function $f(x)$ is decreasing on $(-\infty, -2)$ and increasing on $(2, \infty)$.
Solution: \(h(x) = \frac{x}{1+x^4} \)

\[
h'(x) = \frac{1 - 3x^4}{(1 + x^4)^2}
\]

\[
0 = 1 - 3x^4
\]

\[
x = \pm \frac{1}{\sqrt[4]{3}} \approx 0.759836
\]

Function \(f(x) \) is increasing on \((-1/\sqrt[4]{3}, 1/\sqrt[4]{3})\) and increasing on \((-\infty, -1/\sqrt[4]{3}) \cup (1/\sqrt[4]{3}, \infty)\).
First Derivative Test

Theorem (First Derivative Test)

Suppose that f is continuous on interval $[a, b]$ and $c \in (a, b)$ is a critical number.

1. If $f'(x) > 0$ for all $x \in (a, c)$ and $f'(x) < 0$ for all $x \in (c, b)$ [in other words f changes from increasing to decreasing at c] then $f(c)$ is a local maximum.

2. If $f'(x) < 0$ for all $x \in (a, c)$ and $f'(x) > 0$ for all $x \in (c, b)$ [in other words f changes from decreasing to increasing at c] then $f(c)$ is a local minimum.

3. If $f'(x)$ has the same sign on (a, c) and (c, b), then $f(c)$ is not a local extremum.
Examples

Find the local extrema (if any) for the following functions.

\[f(x) = x^2 e^{-x} \]

\[g(x) = x^{4/3} + 4x^{1/3} \]

\[h(x) = \frac{x^2 + 2}{(1 + x)^2} \]
Examples

Find the local extrema (if any) for the following functions.

1. \(f(x) = x^2 e^{-x} \)
 \[f'(x) = x(2 - x)e^{-x} \]

2. \(g(x) = x^{4/3} + 4x^{1/3} \)

3. \(h(x) = \frac{x^2 + 2}{(1 + x)^2} \)
Examples

Find the local extrema (if any) for the following functions.

- $f(x) = x^2 e^{-x}$

 $f'(x) = x(2 - x)e^{-x}$

- $g(x) = x^{4/3} + 4x^{1/3}$

 $g'(x) = \frac{4(x + 1)}{3x^{2/3}}$

- $h(x) = \frac{x^2 + 2}{(1 + x)^2}$
Examples

Find the local extrema (if any) for the following functions.

1. \(f(x) = x^2 e^{-x} \)
 \[f'(x) = x(2 - x)e^{-x} \]

2. \(g(x) = x^{4/3} + 4x^{1/3} \)
 \[g'(x) = \frac{4(x + 1)}{3x^{2/3}} \]

3. \(h(x) = \frac{x^2 + 2}{(1 + x)^2} \)
 \[h'(x) = \frac{2(x - 2)}{(x + 1)^3} \]
\(f(x) = x^2 e^{-x} \)
\[g(x) = x^{4/3} + 4x^{1/3} \]
\[h(x) = \frac{x^2 + 2}{(1+x)^2} \]
Homework

- Read Section 3.4
- Exercises: 1–39 odd