Given a pair a parametric equations

\[x = f(t) \]
\[y = g(t) \]

for \(a \leq t \leq b \) we know how to graph the parametric curve.

Today we will focus our attention on finding the slope of the tangent line to the graph and the area enclosed by a simple closed curve.
Suppose $x = f(t)$ and $y = g(t)$, by the Chain Rule for Derivatives

$$\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}.$$

Let $(x_0, y_0) = (x(t_0), y(t_0))$ then so long as $\frac{dx}{dt}(t_0) \neq 0$ then

$$\frac{dy}{dx}(x_0) = \frac{dy}{dt}(t_0) \frac{dx}{dt}(t_0).$$

Remark: If $x'(t_0) = y'(t_0) = 0$ then

$$\frac{dy}{dx}(x_0) = \lim_{t \to t_0} \frac{dy}{dt} \frac{dx}{dt} = \lim_{t \to t_0} \frac{y'(t)}{x'(t)},$$

provided the limit exists.
Example

Find the slope and equation of the tangent line for the following parametric equations at $t = 1$.

$$x = t^3 - t$$
$$y = t^4 - 5t^2 + 4$$
Solution

\[
\frac{dx}{dt} = 3t^2 - 1 \\
\frac{dy}{dt} = 4t^3 - 10t \\
\left.\frac{dy}{dx}\right|_{t=1} = \frac{4 - 10}{3 - 1} = -3
\]

Since \((x(1), y(1)) = (0, 0)\) then the equation of the tangent line is

\[y = -3x\]
The second derivative is the derivative of the first derivative.

\[
\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dx}{dt}
\]
Find the Second Derivative (Concavity)

The second derivative is the derivative of the first derivative.

\[
\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right)
\]

Note: \(\frac{d^2 y}{dx^2} \neq \frac{d^2 y}{dt^2} \)
Example

Find $\frac{d^2y}{dx^2}$ for the following parametric equations at $t = 1$.

\[x = t^3 - t \]
\[y = t^4 - 5t^2 + 4 \]
\[
\frac{d^2 y}{dx^2} = \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dx}{dt} = \frac{\frac{d}{dt} \left(\frac{4t^3 - 10t}{3t^2 - 1} \right)}{3t^2 - 1}
\]

\[
= \frac{(12t^2 - 10)(3t^2 - 1) - (4t^3 - 10t)(6t)}{(3t^2 - 1)^2} \frac{1}{3t^2 - 1}
\]

\[
\left. \frac{d^2 y}{dx^2} \right|_{t=1} = \frac{(12 - 10)(3 - 1) - (4 - 10t)(6)}{(3 - 1)^2} = 5
\]
Theorem

Suppose that $x'(t)$ and $y'(t)$ are continuous. Then for the curve defined by the parametric equations

\[
x = x(t) \\
y = y(t)
\]

1. If $y'(c) = 0$ and $x'(c) \neq 0$, there is a horizontal tangent line at the point $(x(c), y(c))$.
2. If $x'(c) = 0$ and $y'(c) \neq 0$, there is a vertical tangent line at the point $(x(c), y(c))$.
Find the points at which the graph of the following parametric equations has horizontal or vertical tangent lines.

\begin{align*}
x &= t^2 - 1 \\
y &= t^4 - 4t^2
\end{align*}
Solution

\[
\frac{dx}{dt} = 2t
\]
\[
\frac{dy}{dt} = 4t^3 - 8t = 4t(t^2 - 2)
\]
\[\frac{dx}{dt} = 2t \]
\[\frac{dy}{dt} = 4t^3 - 8t = 4t(t^2 - 2) \]

Since when \(y'(\pm\sqrt{2}) = 0 \) and \(x'(\pm\sqrt{2}) = \pm2\sqrt{2} \neq 0 \) then the graph has horizontal tangents when \(t = \pm\sqrt{2} \).

\[\left(x(\pm\sqrt{2}), y(\pm\sqrt{2}) \right) = (2 - 1, 4 - 8) = (1, -4) \]
Solution

\[\frac{dx}{dt} = 2t\]
\[\frac{dy}{dt} = 4t^3 - 8t = 4t(t^2 - 2)\]

Since when \(y'(\pm \sqrt{2}) = 0\) and \(x'(\pm \sqrt{2}) = \pm 2\sqrt{2} \neq 0\) then the graph has horizontal tangents when \(t = \pm \sqrt{2}\).

\[\left(x(\pm \sqrt{2}), y(\pm \sqrt{2}) \right) = (2 - 1, 4 - 8) = (1, -4)\]

Note that \(x'(0) = y'(0) = 0\) so the slope of the tangent line when \(t = 0\) is

\[\lim_{t \to 0} \frac{4t^3 - 8t}{2t} = \lim_{t \to 0} 2(t^2 - 2) = -4 \neq 0.\]

There are no vertical tangents.
If the position of a moving object is given by the parametric equations

\[
\begin{align*}
 x &= x(t) \\
 y &= y(t)
\end{align*}
\]

where \(x(t) \) and \(y(t) \) are differentiable we say

- the **horizontal component of velocity** is given by \(x'(t) \),
- the **vertical component of velocity** is given by \(y'(t) \), and
- the **speed** is given by \(\sqrt{[x'(t)]^2 + [y'(t)]^2} \).
Find the components of velocity and the speed of an object moving according to the parametric equations

\[x = 3 \cos t + \sin 3t \]
\[y = 3 \sin t + \cos 3t \]

at \(t = \pi/2 \).
Solution

\[\begin{align*}
x'(t) &= -3 \sin t + 3 \cos 3t \\
y'(t) &= 3 \cos t - 3 \sin 3t
\end{align*}\]
Solution

\[x'(t) = -3 \sin t + 3 \cos 3t \]
\[y'(t) = 3 \cos t - 3 \sin 3t \]
\[x'(\pi/2) = -3 \]
\[y'(\pi/2) = 3 \]
Solution

\[x'(t) = -3 \sin t + 3 \cos 3t \]
\[y'(t) = 3 \cos t - 3 \sin 3t \]
\[x'(\pi/2) = -3 \]
\[y'(\pi/2) = 3 \]
\[s(\pi/2) = \sqrt{(-3)^2 + (3)^2} = 3\sqrt{2} \]
Recall: if \(y = f(x) \geq 0 \) for \(a \leq x \leq b \) then the area under the curve, above the \(x \)-axis and between \(x = a \) and \(x = b \) is given by

\[
A = \int_{a}^{b} f(x) \, dx = \int_{a}^{b} y \, dx.
\]
Recall: if \(y = f(x) \geq 0 \) for \(a \leq x \leq b \) then the area under the curve, above the \(x \)-axis and between \(x = a \) and \(x = b \) is given by

\[
A = \int_a^b f(x) \, dx = \int_a^b y \, dx.
\]

If the region is enclosed by parametrically defined curves

\[
x = x(t) \\
y = y(t)
\]

with \(c \leq t \leq d \) then

\[
A = \int_a^b \frac{y}{y(t)} \frac{dx}{x'(t)} \, dt = \int_c^d y(t)x'(t) \, dt.
\]
Suppose that the parametric equations \(x = x(t) \) and \(y = y(t) \) with \(c \leq t \leq d \) describe a curve that is traced out clockwise exactly once as \(t \) increases from \(c \) to \(d \) and where the curve does not intersect itself, except that the initial and terminal points are the same, i.e., \(x(c) = x(d) \) and \(y(c) = y(d) \). Then the enclosed area is given by

\[
A = \int_{c}^{d} y(t)x'(t) \, dt = -\int_{c}^{d} x(t)y'(t) \, dt.
\]

If the curve is traced out counterclockwise, then the enclosed curve is given by

\[
A = -\int_{c}^{d} y(t)x'(t) \, dt = \int_{c}^{d} x(t)y'(t) \, dt.
\]
Find the area enclosed by the graph of the parametric curve described by

\[x = t - \sin t \]
\[y = 1 - \cos t \]

for \(0 \leq t \leq 2\pi \).
Solution

\[A = \int_0^{2\pi} (1 - \cos t)(1 - \cos t) \, dt \]

\[= \int_0^{2\pi} (1 - 2 \cos t + \cos^2 t) \, dt \]

\[= \int_0^{2\pi} \left(1 - 2 \cos t + \frac{1}{2}(1 + \cos 2t) \right) \, dt \]

\[= \int_0^{2\pi} \left(\frac{3}{2} - 2 \cos t + \frac{1}{2} \cos 2t \right) \, dt \]

\[= 3\pi \]
The ellipse whose general formula is \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) for \(a, b > 0 \) is described parametrically by

\[
\begin{align*}
x &= a \cos t \\
y &= b \sin t
\end{align*}
\]

for \(0 \leq t \leq 2\pi \). Use the parametric equations to find a formula for the area of an ellipse.
Solution

\[A = - \int_{0}^{2\pi} (b \sin t) (-a \sin t) \, dt \]
\[= ab \int_{0}^{2\pi} \sin^2 t \, dt \]
\[= \frac{ab}{2} \int_{0}^{2\pi} (1 - \cos 2t) \, dt \]
\[= ab \pi \]
Homework

- Read Section 9.2
- Exercises: 1–29 odd, 35