Integration by Parts
MATH 211, Calculus II

J. Robert Buchanan
Department of Mathematics

Spring 2011
If necessary refresh your skills with basic integration including \textbf{integration by substitution} by reviewing Section 6.1 and working the exercises at the end of the section.

Today’s discussion will focus on the second major technique of integration, \textbf{integration by parts}.

We will see that integration by parts is related to the product rule for derivatives.
Suppose that u and v are functions of x then

\[
\frac{d}{dx} (uv) = v \frac{du}{dx} + u \frac{dv}{dx}
\]

\[
d(uv) = v \, du + u \, dv
\]

\[
\int d(uv) = \int (v \, du + u \, dv)
\]

\[
uv = \int v \, du + \int u \, dv
\]

\[
\int u \, dv = uv - \int v \, du
\]
Integration by Parts Formula

Theorem

If \(u = f(x) \) and \(v = g(x) \) and \(f' \) and \(g' \) are continuous then

\[
\int u \, dv = uv - \int v \, du
\]

or alternatively

\[
\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.
\]
Integration by Parts Formula

Theorem

If $u = f(x)$ and $v = g(x)$ and f' and g' are continuous then

$$\int u \, dv = uv - \int v \, du$$

or alternatively

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx.$$

Remark: the derivative of $g(x)$ in the integral on the left-hand side has moved over to $f(x)$ in the integral on the right-hand side.
Further Remarks

- When trying to apply integration by parts we must designate part of the integrand to be dv and the rest u.
- Usually dv is the most complicated part of the integrand that we can integrate using an elementary technique.
Examples

Example

Use integration by parts to evaluate the following indefinite integrals.

1. \[\int x \sin x \, dx \]
2. \[\int \ln x \, dx \]
3. \[\int \cos^{-1} x \, dx \]
Integrate by parts choosing

\[u = x \quad v = -\cos x \]
\[du = dx \quad dv = \sin x \, dx \]

then

\[
\int x \sin x \, dx = x (-\cos x) - \int (-\cos x) \, dx
\]
\[
= -x \cos x + \int \cos x \, dx
\]
\[
= -x \cos x + \sin x + C.
\]
Integrate by parts choosing

\[u = \ln x \quad \quad \quad \quad v = x \]
\[du = \frac{1}{x} \, dx \quad \quad \quad \quad dv = dx \]

then

\[\int \ln x \, dx = x \ln x - \int x \left(\frac{1}{x} \right) \, dx \]
\[= x \ln x - \int 1 \, dx \]
\[= x \ln x - x + C. \]
Integrate by parts choosing

\[
\begin{align*}
 u &= \cos^{-1} x \\
 du &= \frac{-1}{\sqrt{1-x^2}} \, dx \\
 v &= x \\
 dv &= dx
\end{align*}
\]

then

\[
\begin{align*}
 \int \cos^{-1} x \, dx &= x \cos^{-1} x - \int x \left(\frac{-1}{\sqrt{1-x^2}} \right) \, dx \\
 &= x \cos^{-1} x + \int \frac{x}{\sqrt{1-x^2}} \, dx.
\end{align*}
\]

Now integrate by substitution letting

\[
\begin{align*}
 w &= 1 - x^2 \\
 -\frac{1}{2} \, dw &= x \, dx
\end{align*}
\]
\[
\int \cos^{-1} x \, dx = x \cos^{-1} x + \int \frac{x}{\sqrt{1-x^2}} \, dx
\]
\[
= x \cos^{-1} x - \frac{1}{2} \int w^{-1/2} \, dw
\]
\[
= x \cos^{-1} x - \sqrt{w} + C
\]
\[
= x \cos^{-1} x - \sqrt{1-x^2} + C
\]
Remark: Sometimes integration by parts must be used more than once.

Example
Use integration by parts to evaluate the following indefinite integrals.

1. \[\int x^2 \cos x \, dx \]
2. \[\int e^x \sin x \, dx \]
Tabular Integration

Consider \(\int x^2 \cos x \, dx \) and suppose we arrange our work in the following table:

<table>
<thead>
<tr>
<th>u</th>
<th>dv</th>
<th>sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2)</td>
<td>(\cos x)</td>
<td></td>
</tr>
<tr>
<td>(\cos x)</td>
<td>dv</td>
<td></td>
</tr>
<tr>
<td>(x^2)</td>
<td>(\sin x)</td>
<td>+</td>
</tr>
<tr>
<td>(2x)</td>
<td>(-\cos x)</td>
<td>-</td>
</tr>
<tr>
<td>(2)</td>
<td>(-\sin x)</td>
<td>+</td>
</tr>
<tr>
<td>0</td>
<td>(\cos x)</td>
<td>-</td>
</tr>
</tbody>
</table>

If we multiply across the completed rows and add these products we get

\[
\int x^2 \cos x \, dx = x^2 \sin x + 2x \cos x - 2\sin x + C.
\]

Note: differentiate down the first column, antidifferentiate down the second column, alternate signs (starting with +) in the third column.
Example

Use tabular integration (or repeated integration by parts) to evaluate \(\int x^3 e^x \, dx \).
Often common integration formulas are expressed recursively. For example:

\[\int \cos^n x \, dx = \int \cos^{n-1} x \cos x \, dx \]

using integration by parts with

\[
\begin{align*}
u &= \cos^{n-1} x \\
v &= \sin x \\
du &= -(n-1) \sin x \cos^{n-2} x \, dx \\
dv &= \cos x \, dx
\end{align*}
\]

we obtain

\[\int \cos^n x \, dx = \sin x \cos^{n-1} x + \int (n-1) \sin^2 x \cos^{n-2} x \, dx \]
\[\int \cos^n x \, dx = \sin x \cos^{n-1} x + \int (n - 1) \sin^2 x \cos^{n-2} x \, dx \]

\[= \sin x \cos^{n-1} x + (n - 1) \int (1 - \cos^2 x) \cos^{n-2} x \, dx \]

\[= \sin x \cos^{n-1} x + (n - 1) \int \cos^{n-2} x \, dx \]

\[- (n - 1) \int \cos^n x \, dx \]

\[n \int \cos^n x \, dx = \sin x \cos^{n-1} x + (n - 1) \int \cos^{n-2} x \, dx \]

\[\int \cos^n x \, dx = \frac{1}{n} \sin x \cos^{n-1} x + \frac{n - 1}{n} \int \cos^{n-2} x \, dx \]
Integration by parts is easily adapted to definite integrals:

\[\int_{x=a}^{x=b} u \, dv = uv \bigg|_{x=a}^{x=b} - \int_{x=a}^{x=b} v \, du \]
Example

Use integration by parts to evaluate the following definite integrals.

1. \(\int_{0}^{\pi/2} x \sin x \, dx \)
2. \(\int_{-1}^{0} 3xe^{2x} \, dx \)
3. \(\int_{1}^{e} \sqrt{x} \ln x \, dx \)
Homework

- Read Section 6.2
- Exercises 1–57 odd.