Please circle the most appropriate answer for each of the following problems. Each problem is worth ten points.

1. Find the limit of the sequence \(\left\{ \frac{(-1)^k k}{k^2 + 4} \right\}_{k=1}^{\infty} \) as \(k \to \infty \).

 (a) 1
 (b) \(-1\)
 (c) 0
 (d) The limit does not exist.
 (e) none of the above.
2. Find the sum of the infinite series

\[\sum_{k=0}^{\infty} (-1)^k \frac{5}{4^k}. \]

(a) 4
(b) 20/3
(c) 13/3
(d) 11/3
(e) none of the above.

3. The infinite series

\[\sum_{k=1}^{\infty} (-1)^k \frac{k^2 3^k}{2^k} \]

(a) converges absolutely
(b) converges conditionally
(c) diverges
(d) is indeterminate
(e) none of the above.
4. The infinite series

\[\sum_{k=0}^{\infty} (-1)^{k+1} \frac{k^2 2^k}{k!} \]

(a) converges absolutely
(b) converges conditionally
(c) diverges
(d) is indeterminate
(e) none of the above.

5. The smallest number of terms necessary to estimate the sum of the infinite series

\[\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \]

to within 0.00001 of its correct value is

(a) 7
(b) 8
(c) 9
(d) 10
(e) 11.