Orthogonal Matrices; Change of Basis
MATH 322, Linear Algebra I

J. Robert Buchanan

Department of Mathematics

Spring 2015
Objectives

Sometimes choosing the appropriate basis when working with a vector space can make a specific problem easier. In this lesson we will

- discuss a class of matrices whose inverses can be found by transposition, and
- use them in a variety of applications.
Orthogonal Matrices

Definition
A square matrix A with the property that $A^{-1} = A^T$ is said to be an orthogonal matrix.
Orthogonal Matrices

Definition
A square matrix A with the property that $A^{-1} = A^T$ is said to be an orthogonal matrix.

Remark: A square matrix A is orthogonal if and only if either $AA^T = I$ or $A^TA = I$.
Example (1 of 2)

Verify that $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ 2 & -2 & -1 \\ 2 & 1 & 2 \end{bmatrix}$ is an orthogonal matrix.
Verify that the matrix which rotates a vector through angle θ about the origin is an orthogonal matrix.
Equivalent Statements

Theorem

For an $n \times n$ matrix A the following statements are equivalent.

1. A is orthogonal.
2. The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
3. The column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
Proof (1) ⇐⇒ (2)

- Assume A is an orthogonal matrix, let r_i be the ith row of A and let c_j be the jth column of A^T.

- Consider the product

$$AA^T = \begin{bmatrix}
 r_1 \cdot c_1 & r_1 \cdot c_2 & \cdots & r_1 \cdot c_n \\
 r_2 \cdot c_1 & r_2 \cdot c_2 & \cdots & r_2 \cdot c_n \\
 \vdots & \vdots & \ddots & \vdots \\
 r_n \cdot c_1 & r_n \cdot c_2 & \cdots & r_n \cdot c_n
\end{bmatrix} = \begin{bmatrix}
 r_1 \cdot r_1 & r_1 \cdot r_2 & \cdots & r_1 \cdot r_n \\
 r_2 \cdot r_1 & r_2 \cdot r_2 & \cdots & r_2 \cdot r_n \\
 \vdots & \vdots & \ddots & \vdots \\
 r_n \cdot r_1 & r_n \cdot r_2 & \cdots & r_n \cdot r_n
\end{bmatrix}$$

- $AA^T = I$ if and only if $r_i \cdot r_i = 1$ for $i = 1, 2, \ldots, n$ and $r_i \cdot r_j = 0$ when $i \neq j$.

- $B = \{r_1, r_2, \ldots, r_n\}$ is an orthonormal set in \mathbb{R}^n.
Properties of Orthogonal Matrices

Theorem
Suppose that A and B are $n \times n$ orthogonal matrices, then

- A^T is orthogonal,
- A^{-1} is orthogonal,
- AB is orthogonal, and
- $\det(A) = \pm 1$.
Orthogonal Matrices as Linear Operators

Theorem
For an $n \times n$ matrix A the following statements are equivalent.

1. A is orthogonal.
2. $\|Ax\| = \|x\|$ for all $x \in \mathbb{R}^n$.
3. $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$.

Remark: If $T_A: \mathbb{R}^n \rightarrow \mathbb{R}^n$ is multiplication by an orthogonal matrix A, then T_A is called an orthogonal operator on \mathbb{R}^n.
Theorem
For an $n \times n$ matrix A the following statements are equivalent.

1. A is orthogonal.
2. $\|Ax\| = \|x\|$ for all $x \in \mathbb{R}^n$.
3. $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$.

Remark: If $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is multiplication by an orthogonal matrix A, then T is called an orthogonal operator on \mathbb{R}^n.
Proof $(1) \implies (2) \implies (3)$

- Suppose A is orthogonal, then

$$
\|Ax\| = \sqrt{Ax \cdot Ax} = \sqrt{x \cdot A^TAx} = \sqrt{x \cdot x} = \|x\|.
$$
Proof (1) \implies (2) \implies (3)

- Suppose \(A \) is orthogonal, then

\[
\|Ax\| = \sqrt{Ax \cdot Ax} = \sqrt{x \cdot A^TAx} = \sqrt{x \cdot x} = \|x\|.
\]

- Suppose \(\|Ax\| = \|x\| \) for all \(x \in \mathbb{R}^n \).

\[
Ax \cdot Ay = \frac{1}{4}\|Ax + Ay\|^2 - \frac{1}{4}\|Ax - Ay\|^2
\]

\[
= \frac{1}{4}\|A(x + y)\|^2 - \frac{1}{4}\|A(x - y)\|^2
\]

\[
= \frac{1}{4}\|x + y\|^2 - \frac{1}{4}\|x - y\|^2
\]

\[
= x \cdot y
\]
Proof (3) \implies (1)

- Suppose that $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$, then

\[
x \cdot y = x \cdot A^T Ay
\]
\[
x \cdot y - x \cdot A^T Ay = 0
\]
\[
x \cdot (I - A^TA)y = 0
\]
Proof $(3) \implies (1)$

- Suppose that $Ax \cdot Ay = x \cdot y$ for all $x, y \in \mathbb{R}^n$, then

\[
\begin{align*}
 x \cdot y &= x \cdot A^T Ay \\
 x \cdot y - x \cdot A^T Ay &= 0 \\
 x \cdot (I - A^T A)y &= 0
\end{align*}
\]

- Let $x = (I - A^T A)y$ in the last equation.

\[
\begin{align*}
 (I - A^T A)y \cdot (I - A^T A)y &= 0 \\
 (I - A^T A)y &= 0 \quad \text{(positivity axiom)}
\end{align*}
\]
Proof (3) \iff (1)

- Suppose that $A \mathbf{x} \cdot A \mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then
 \[
 \mathbf{x} \cdot \mathbf{y} = \mathbf{x} \cdot A^T A \mathbf{y} \\
 \mathbf{x} \cdot \mathbf{y} - \mathbf{x} \cdot A^T A \mathbf{y} = 0 \\
 \mathbf{x} \cdot (I - A^T A) \mathbf{y} = 0
 \]

- Let $\mathbf{x} = (I - A^T A) \mathbf{y}$ in the last equation.
 \[
 (I - A^T A) \mathbf{y} \cdot (I - A^T A) \mathbf{y} = 0 \\
 (I - A^T A) \mathbf{y} = 0 \quad \text{(positivity axiom)}
 \]

- Since this holds for all $\mathbf{y} \in \mathbb{R}^n$ then $I - A^T A = 0$, the $n \times n$ zero matrix. Consequently $A^T A = I$ and A is orthogonal.
Recall: If $B = \{v_1, v_2, \ldots, v_n\}$ is a basis for a vector space V and $v \in V$ then there are scalars k_1, k_2, \ldots, k_n such that

$$v = k_1 v_1 + k_2 v_2 + \cdots + k_n v_n.$$

The vector of coordinates of v relative to B is denoted

$$(v)_B = (k_1, k_2, \ldots, k_n)$$

and the coordinate matrix of v relative to B is

$$[v]_B = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}. $$
Properties of a Transition Matrix

Theorem
If P is the transition matrix from \(\mathcal{B}' \) to \(\mathcal{B} \), then

1. \(P \) is invertible.
2. \(P^{-1} \) is the transition matrix from \(\mathcal{B} \) to \(\mathcal{B}' \).
Properties of a Transition Matrix

Theorem

If P is the transition matrix from B' to B, then

1. P is invertible.
2. P^{-1} is the transition matrix from B to B'.

\[
[v]_B = P[v]_{B'} \quad \text{and} \quad [v]_{B'} = P^{-1}[v]_B
\]
Change of Orthonormal Basis

Theorem
If P is the transition matrix from one orthonormal basis to another orthonormal basis for a finite-dimensional inner product space, then P is an orthogonal matrix, i.e., $P^{-1} = P^T$.
Proof (1 of 2)

Let V is a finite-dimensional inner product space, let \mathcal{B} and \mathcal{B}' be two orthonormal bases for V, and let P be the transition matrix from \mathcal{B}' to \mathcal{B}.

To avoid confusion with the vector norm on \mathbb{R}^n relative to the Euclidean inner product (denoted $\| \|$), we will denote the vector norm on V relative to its inner product as $\| \|_V$.
Proof (2 of 2)

- For any orthonormal basis for V the norm of any $u \in V$ is the same as the Euclidean norm of its coordinate vector.

\[
\|u\|_V = \| (u)_{B'} \| = \| (u)_B \| = \| P(u)_{B'} \|
\]
Proof (2 of 2)

For any orthonormal basis for V the norm of any $u \in V$ is the same as the Euclidean norm of its coordinate vector.

\[\|u\|_V = \|(u)_{B'}\| = \|(u)_B\| = \|P(u)_{B'}\| \]

Let x be any vector in \mathbb{R}^n and u be the vector in V whose coordinate vector with respect to basis B' is x.

\[\|u\| = \|x\| = \|Px\| \]

which proves that matrix P is orthogonal.
Homework

- Read Section 7.1
- Exercises: 1, 3, 5, 7, 11