Linear Independence and the Wronskian
MATH 365 Ordinary Differential Equations

J. Robert Buchanan

Department of Mathematics

Spring 2015
Let functions $p(t)$ and $q(t)$ be continuous functions on the open interval $I = (\alpha, \beta)$.

For any function $\phi(t)$ which is twice differentiable on I, we define the **linear operator** L as follows.

$$L[\phi] = \phi'' + p \phi' + q \phi$$
Operator Notation

- Let functions $p(t)$ and $q(t)$ be continuous functions on the open interval $I = (\alpha, \beta)$.
- For any function $\phi(t)$ which is twice differentiable on I, we define the linear operator L as follows.
 \[L[\phi] = \phi'' + p \phi' + q \phi \]
- $L[\phi]$ is a function defined on I. We can evaluate this function as
 \[L[\phi](t) = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t) \]
 for all $t \in I$.
Existence and Uniqueness of Solutions

Theorem
Consider the initial value problem

\[L[y] = y'' + p(t)y' + q(t)y = g(t) \]
\[y(t_0) = y_0 \]
\[y'(t_0) = y'_0 \]

where \(p, q, \) and \(g \) are continuous on an open interval \(I \) that contains the point \(t_0 \). Then there is exactly one solution \(y = \phi(t) \) to this problem and the solution is defined throughout the interval \(I \).
Example

Find the longest interval in which the solution to the initial value problem

\[(t^2 - 3t)y'' + yy' - (t + 3)y = 0\]

\[y(1) = 2\]

\[y'(1) = 1\]

is certain to exist.
Principle of Superposition

Theorem

If y_1 and y_2 are two solutions to the differential equation

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

then the linear combination $y = c_1 y_1 + c_2 y_2$ is also a solution for any values of the constants c_1 and c_2.
Consider the IVP:

\[L[y] = y'' + p(t)y' + q(t)y = 0 \]
\[y(t_0) = y_0 \]
\[y'(t_0) = y'_0. \]

Suppose \(y_1(t) \) and \(y_2(t) \) solve the ODE. Can a solution to the IVP be written as a linear combination of \(y_1 \) and \(y_2 \)?
Solution

Since \(y_1 \) and \(y_2 \) solve the ODE, then by the Principle of Superposition, \(y = c_1 y_1 + c_2 y_2 \) also solve the ODE. We need merely pick \(c_1 \) and \(c_2 \) so that the initial conditions are satisfied.

\[
c_1 y_1(t_0) + c_2 y_2(t_0) = y_0
\]

\[
c_1 y'_1(t_0) + c_2 y'_2(t_0) = y_0
\]
Solution

Since y_1 and y_2 solve the ODE, then by the Principle of Superposition, $y = c_1 y_1 + c_2 y_2$ also solve the ODE. We need merely pick c_1 and c_2 so that the initial conditions are satisfied.

$$c_1 y_1(t_0) + c_2 y_2(t_0) = y_0$$
$$c_1 y'_1(t_0) + c_2 y'_2(t_0) = y_0$$

The solution to this linear system of equations can be found using Cramer’s Rule.
Cramer's Rule

\[c_1 y_1(t_0) + c_2 y_2(t_0) = y_0 \]
\[c_1 y'_1(t_0) + c_2 y'_2(t_0) = y_0 \]

Has solution

\[
c_1 = \frac{y_0 y'_2(t_0) - y'_0 y_2(t_0)}{y_1(t_0)y'_2(t_0) - y'_1(t_0)y_2(t_0)} = \frac{\begin{vmatrix} y_0 & y'_2(t_0) \\ y'_0 & y'_2(t_0) \end{vmatrix}}{\begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix}}
\]

\[
c_2 = \frac{-y_0 y'_1(t_0) + y'_0 y_1(t_0)}{y_1(t_0)y'_2(t_0) - y'_1(t_0)y_2(t_0)} = \frac{\begin{vmatrix} y_1(t_0) & y_0 \\ y'_1(t_0) & y'_0 \end{vmatrix}}{\begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix}}.
\]

Provided the denominator determinant is nonzero.
Wronskian Determinant

The expression

\[W(y_1, y_2)(t_0) = y_1(t_0)y_2'(t_0) - y_1'(t_0)y_2(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{vmatrix} \]

is called the **Wronskian determinant**.
Important Result

Theorem
Suppose that y_1 and y_2 are two solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0$$

and the initial conditions

$$y(t_0) = y_0$$
$$y'(t_0) = y'_0$$

are assigned. Then it is always possible to choose constants c_1 and c_2 so that

$$y = c_1 y_1(t) + c_2 y_2(t)$$

satisfies the differential equation and initial conditions if and only if $W(y_1, y_2)(t_0) \neq 0$.
Theorem

Suppose that y_1 and y_2 are two solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0.$$

Then the family of solutions

$$y = c_1 y_1(t) + c_2 y_2(t)$$

with arbitrary coefficients c_1 and c_2 includes every solution to the ODE if and only if there is a point t_0 where the Wronskian of y_1 and y_2 is nonzero.
General Solution

Theorem
Suppose that y_1 and y_2 are two solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0.$$

Then the family of solutions

$$y = c_1 y_1(t) + c_2 y_2(t)$$

with arbitrary coefficients c_1 and c_2 includes every solution to the ODE if and only if there is a point t_0 where the Wronskian of y_1 and y_2 is nonzero.

Remarks:
- We call $y = c_1 y_1(t) + c_2 y_2(t)$ with arbitrary coefficients the general solution.
- The set $S = \{y_1(t), y_2(t)\}$ is called a fundamental set of solutions if and only if their Wronskian is nonzero.
Definition
Two functions f and g are said to be \textbf{linearly dependent} on an interval I if there exist two constants k_1 and k_2, not both zero, such that

$$k_1 f(t) + k_2 g(t) = 0$$

for all $t \in I$. If the equation above holds for all $t \in I$ only if $k_1 = k_2 = 0$ then f and g are said to be \textbf{linearly independent}.
Examples

Determine if the following pairs of functions are linearly dependent or independent on \mathbb{R}.

$\begin{align*}
\text{f}(t) &= e^{3t} \text{ and } g(t) = e^{3(t-1)} \\
\text{f}(t) &= t^2 + t + 1 \text{ and } g(t) = 3t^2 - 2t + 1
\end{align*}$
Wronskian

The Wronskian can be used to determine if two functions are linearly independent on an interval.

Theorem
If f and g are differentiable functions on an open interval I, and $W(f, g)(t_0) \neq 0$ for some $t_0 \in I$, then f and g are linearly independent on I. Moreover, if f and g are linearly dependent on I, then $W(f, g)(t) = 0$ for all $t \in I$.

Proof.
Suppose $W(f, g)(t_0) \neq 0$ and suppose $c_1 f(t) + c_2 g(t)$ is zero in I, then $c_1 f(t_0) + c_2 g(t_0) = 0$.

$c_1 f'(t_0) + c_2 g'(t_0) = 0$
Wronskian

The **Wronskian** can be used to determine if two functions are linearly independent on an interval.

Theorem

If \(f \) and \(g \) are differentiable functions on an open interval \(I \) and if \(W(f, g)(t_0) \neq 0 \) for some \(t_0 \in I \), then \(f \) and \(g \) are linearly independent on \(I \). Moreover, if \(f \) and \(g \) are linearly dependent on \(I \), then \(W(f, g)(t) = 0 \) for all \(t \in I \).
Wronskian

The **Wronskian** can be used to determine if two functions are linearly independent on an interval.

Theorem

If f and g are differentiable functions on an open interval I, and if $W(f, g)(t_0) \neq 0$ for some $t_0 \in I$, then f and g are linearly independent on I. Moreover, if f and g are linearly dependent on I, then $W(f, g)(t) = 0$ for all $t \in I$.

Proof.

Suppose $W(f, g)(t_0) \neq 0$ and suppose $c_1 f(t) + c_2 g(t)$ is zero in I, then

\[
\begin{align*}
 c_1 f(t_0) + c_2 g(t_0) &= 0 \\
 c_1 f'(t_0) + c_2 g'(t_0) &= 0
\end{align*}
\]
Examples

Use the Wronskian to establish the linear dependence or independence of the following pairs of functions on \mathbb{R}.

- $f(t) = e^{4t}$ and $g(t) = e^{-4t}$
- $f(t) = 2t^3$ and $g(t) = -3t^3$
- $f(t) = 1$ and $g(t) = \cos t$
Theorem (Abel’s Theorem)

If \(y_1 \) and \(y_2 \) are solutions to the ODE

\[
L[y] = y'' + p(t)y' + q(t)y = 0
\]

where \(p \) and \(q \) are continuous on an open interval \(I \), then the Wronskian \(W(y_1, y_2)(t) \) is given by

\[
W(y_1, y_2)(t) = ce^{-\int p(t)\,dt}
\]

where \(c \) is a constant that depends on \(y_1 \) and \(y_2 \), but not on \(t \). Either \(W(y_1, y_2)(t) = 0 \) for all \(t \in I \) (because \(c = 0 \)) or \(W(y_1, y_2)(t) \neq 0 \) for all \(t \in I \) (because \(c \neq 0 \)).
Proof.
By assumption

\[y_1'' + p(t)y_1' + q(t)y_1 = 0 \]
\[y_2'' + p(t)y_2' + q(t)y_2 = 0. \]

Multiplying the first equation by \(-y_2\) and multiplying the second equation by \(y_1\) yields

\[-y_1''y_2 - p(t)y_1'y_2 - q(t)y_1y_2 = 0 \]
\[y_1y_2'' + p(t)y_1y_2' + q(t)y_1y_2 = 0. \]
Abel’s Theorem (3 of 3)

Proof.

\[-y_1''y_2 - p(t)y_1'y_2 - q(t)y_1y_2 = 0\]
\[y_1y_2'' + p(t)y_1'y_2 + q(t)y_1y_2 = 0\]

Adding the two equations produces

\[y_1y_2''' - y_1''y_2 + p(t) (y_1y_2' - y_1'y_2) = 0\]
\[\frac{dW}{dt} + p(t)W = 0\]
Use Abel’s Theorem to find the general form of the Wronskian for the following second order linear homogeneous ODEs.

1. \(t^2 y'' + ty' + (t^2 - 1)y = 0 \)
2. \((1 - t^2)y'' - 2ty' + 2y = 0 \)
The following theorem follows from Abel’s Theorem:

Theorem

Let y_1 and y_2 be two solutions of

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on an open interval I. Then y_1 and y_2 are linearly dependent on I if and only if $W(y_1, y_2)(t) = 0$ for all $t \in I$.
Homework

▶ Read Section 3.2
▶ Exercises: 1–39 odd