Bisection Method
MATH 375 Numerical Analysis

J. Robert Buchanan

Department of Mathematics

Fall 2013
In mathematics we nearly always need to solve equations. Most *interesting* equations cannot be solved algebraically.
In mathematics we nearly always need to solve equations.

Most *interesting* equations cannot be solved algebraically.

\[e^x - 4x = 0 \]
In mathematics we nearly always need to solve equations. Most *interesting* equations cannot be solved algebraically.

\[e^x - 4x = 0 \]

We begin to study a set of **root-finding** techniques, starting with the simplest, the **Bisection Method**.
The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.

The Bisection Method operates under the conditions necessary for the **Intermediate Value Theorem** to hold.

Suppose \(f \in C[a, b] \) and \(f(a)f(b) < 0 \), then there exists \(p \in (a, b) \) such that \(f(p) = 0 \).

Remark: The root \(p \) found is not necessarily unique.
The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.

The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

Suppose \(f \in C[a, b] \) and \(f(a) f(b) < 0 \), then there exists \(p \in (a, b) \) such that \(f(p) = 0 \).
The Bisection Method approximates the root of an equation on an interval by repeatedly halving the interval.

The Bisection Method operates under the conditions necessary for the Intermediate Value Theorem to hold.

Suppose \(f \in C[a, b] \) and \(f(a) f(b) < 0 \), then there exists \(p \in (a, b) \) such that \(f(p) = 0 \).

Remark: The root \(p \) found is not necessarily unique.
Given the continuous function $f(x)$ on the interval $[a, b]$ where $f(a) f(b) < 0$:

INPUT endpoints a, b, tolerance ϵ, maximum iterations N.

STEP 1 Set $i = 1$; $FA = f(a)$.

STEP 2 While $i \leq N$ do Steps 3–6.

STEP 3 Set $p = a + \frac{b - a}{2}$; $FP = f(p)$.

STEP 4 If $FP = 0$ or $\frac{b - a}{2} < \epsilon$ then OUTPUT p; STOP.

STEP 5 Set $i = i + 1$.

STEP 6 If $FA \cdot FP > 0$ then set $a = p$;

$FA = FP$, else $b = p$.

STEP 7 OUTPUT “Method failed after N iterations.”; STOP.
The Bisection Method generates a sequence \(\{p_n\}_{n=1}^N \).

We used a stopping criterion of

- \(f(p_n) = 0 \) (in case we hit the root “exactly”), or
- \(\frac{b - a}{2} < \epsilon \) (the original interval is halved enough times that the distance between \(p_{n-1} \) and \(p_n \) is smaller than a specified tolerance), or
- \(i > N \) (the maximum number of iterations is reached).
Alternative Stopping Criteria

Other logic for halting the algorithm includes:

- \(|p_n - p_{n-1}| < \epsilon\)
- \(|f(p_n)| < \epsilon\)
- \(|p_n - p_{n-1}| < \epsilon\) provided \(p_n \neq 0\)
- \(\frac{|p_n - p_{n-1}|}{|p_n|} < \epsilon\)
- \(\frac{|p_n - p_{n-1}|}{\min\{|a_n|, |b_n|\}} < \epsilon\)

Remark: the stopping criterion chosen will depend on the equation being solved. There is no “best” criterion.
Approximate the root of \(f(x) = e^x - 4x \) on \([0, 1]\) with \(\epsilon = 10^{-2} \) and \(N = 10 \).
Approximate the root of \(f(x) = e^x - 4x \) on \([0, 1]\) with \(\epsilon = 10^{-2} \) and \(N = 10 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
<th>(p_n)</th>
<th>(b_n)</th>
<th>(f(p_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>-0.351279</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.284025</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.375</td>
<td>0.5</td>
<td>-0.0450086</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.3125</td>
<td>0.375</td>
<td>0.116838</td>
</tr>
<tr>
<td>4</td>
<td>0.3125</td>
<td>0.34375</td>
<td>0.375</td>
<td>0.035226</td>
</tr>
<tr>
<td>5</td>
<td>0.34375</td>
<td>0.359375</td>
<td>0.375</td>
<td>-0.00506614</td>
</tr>
<tr>
<td>6</td>
<td>0.34375</td>
<td>0.351563</td>
<td>0.359375</td>
<td>0.0150366</td>
</tr>
</tbody>
</table>

Remark: \(p_5 \approx 0.357403 \) and hence \(p_5 \) is a better approximation than \(p_6 \).
Approximate the root of \(f(x) = e^x - 4x \) on \([0, 1]\) with \(\epsilon = 10^{-2} \) and \(N = 10 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(a_n)</th>
<th>(p_n)</th>
<th>(b_n)</th>
<th>(f(p_n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.0</td>
<td>-0.351279</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.25</td>
<td>0.5</td>
<td>0.284025</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>0.375</td>
<td>0.5</td>
<td>-0.0450086</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>0.3125</td>
<td>0.375</td>
<td>0.116838</td>
</tr>
<tr>
<td>4</td>
<td>0.3125</td>
<td>0.34375</td>
<td>0.375</td>
<td>0.035226</td>
</tr>
<tr>
<td>5</td>
<td>0.34375</td>
<td>0.359375</td>
<td>0.375</td>
<td>-0.00506614</td>
</tr>
<tr>
<td>6</td>
<td>0.34375</td>
<td>0.351563</td>
<td>0.359375</td>
<td>0.0150366</td>
</tr>
</tbody>
</table>

Remark: \(p \approx 0.357403 \) and hence \(p_5 \) is a better approximation than \(p_6 \).
The Bisection Method requires the least assumptions on $f(x)$,
The Bisection Method requires the least assumptions on $f(x)$,
the Bisection Method is simple to program,
The Bisection Method requires the least assumptions on $f(x)$,
the Bisection Method is simple to program,
the Bisection Method always converges to a solution, but
The Bisection Method requires the least assumptions on $f(x)$,
the Bisection Method is simple to program,
the Bisection Method always converges to a solution, but
the Bisection Method is slow to converge.
Theorem

If $f \in C[a, b]$ and $f(a)f(b) < 0$, the Bisection Method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a root p of f with the property that

$$|p_n - p| \leq \frac{b - a}{2^n}, \quad \text{for } n \geq 1.$$
Proof.

If \(n = 1 \) then \(p_1 = \frac{a + b}{2} \) and \(p \in (a, b). \)
Proof.

- If $n = 1$ then $p_1 = \frac{a + b}{2}$ and $p \in (a, b)$.
- Thus $|p_1 - p| \leq \frac{b - a}{2}$.
Proof.

- If $n = 1$ then $p_1 = \frac{a + b}{2}$ and $p \in (a, b)$.

- Thus $|p_1 - p| \leq \frac{b - a}{2}$.

- By induction on n then $|p_n - p| \leq \frac{b - a}{2^n}$.
Proof.

1. If $n = 1$ then $p_1 = \frac{a + b}{2}$ and $p \in (a, b)$.

2. Thus $|p_1 - p| \leq \frac{b - a}{2}$.

3. By induction on n then $|p_n - p| \leq \frac{b - a}{2^n}$.

$$p_n = p + O\left(\frac{1}{2^n}\right)$$
Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of \(f(x) = e^x - 4x \) on \([0, 1]\) with \(\epsilon = 10^{-4} \).
Example

Determine the minimum number of iterations of the Bisection Method necessary to approximate a root of $f(x) = e^x - 4x$ on $[0, 1]$ with $\epsilon = 10^{-4}$.

$$|p_n - p| \leq \frac{b - a}{2^n}$$

$$\frac{1 - 0}{2^n} \leq 10^{-4}$$

$$2^n \geq 10^4$$

$$n \geq 14$$
Homework

- Read Section 2.1.
- Exercises: 3a, 11, 13, 15, 16, 17