Given nodes and data \{ (x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)) \}
we have interpolated using:

- Lagrange interpolating polynomial of degree n, with $n + 1$ coefficients,

unfortunately,
Given nodes and data \{\((x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)) \)\} we have interpolated using:

- Lagrange interpolating polynomial of degree \(n \), with \(n + 1 \) coefficients,

unfortunately,

- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.
History

Given nodes and data $\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$ we have interpolated using:

- Lagrange interpolating polynomial of degree n, with $n + 1$ coefficients,

 unfortunately,

- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.

An alternative is **piecewise** polynomial approximation, but of what degree polynomial?
Given nodes and data \{ (x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)) \} we have interpolated using:

- Lagrange interpolating polynomial of degree \(n \), with \(n + 1 \) coefficients,

unfortunately,

- such polynomials can possess large oscillations, and
- the error term can be difficult to construct and estimate.

An alternative is **piecewise** polynomial approximation, but of what degree polynomial?

- Piecewise linear results are not differentiable at \(x_i, \ i = 0, 1, \ldots, n \).
- Piecewise quadratic results are not twice differentiable at \(x_i, \ i = 0, 1, \ldots, n \).
- Piecewise cubic!
A cubic polynomial $p(x) = a + bx + cx^2 + dx^3$ is specified by 4 coefficients.

The cubic spline is twice continuously differentiable.

The cubic spline has the flexibility to satisfy general types of boundary conditions.

While the spline may agree with $f(x)$ at the nodes, we cannot guarantee the derivatives of the spline agree with the derivatives of f.
Given a function $f(x)$ defined on $[a, b]$ and a set of nodes

$$a = x_0 < x_1 < x_2 < \cdots < x_n = b,$$

a **cubic spline interpolant**, S, for f is a piecewise cubic polynomial, S_j on $[x_j, x_{j+1}]$ for $j = 0, 1, \ldots, n - 1$.

$$S(x) = \begin{cases}
 a_0 + b_0(x - x_0) + c_0(x - x_0)^2 + d_0(x - x_0)^3 & \text{if } x_0 \leq x \leq x_1 \\
 a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3 & \text{if } x_1 \leq x \leq x_2 \\
 \vdots & \vdots \\
 a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 & \text{if } x_i \leq x \leq x_{i+1} \\
 \vdots & \vdots \\
 a_{n-1} + b_{n-1}(x - x_{n-1}) + c_{n-1}(x - x_{n-1})^2 + d_{n-1}(x - x_{n-1})^3 & \text{if } x_{n-1} \leq x \leq x_n
\end{cases}$$
The cubic spline interpolant will have the following properties.

- \(S(x_j) = f(x_j) \) for \(j = 0, 1, \ldots, n \).
- \(S_j(x_{j+1}) = S_{j+1}(x_{j+1}) \) for \(j = 0, 1, \ldots, n - 2 \).
- \(S'_j(x_{j+1}) = S'_{j+1}(x_{j+1}) \) for \(j = 0, 1, \ldots, n - 2 \).
- \(S''_j(x_{j+1}) = S''_{j+1}(x_{j+1}) \) for \(j = 0, 1, \ldots, n - 2 \).

One of the following boundary conditions (BCs) is satisfied:

- \(S''(x_0) = S''(x_n) = 0 \) (free or natural BCs).
- \(S'(x_0) = f'(x_0) \) and \(S'(x_n) = f'(x_n) \) (clamped BCs).
Construct a piecewise cubic spline interpolant for the curve passing through

\[(5, 5), (7, 2), (9, 4)\],

with natural boundary conditions.
This will require two cubics:

\[S_0(x) = a_0 + b_0(x - 5) + c_0(x - 5)^2 + d_0(x - 5)^3 \]
\[S_1(x) = a_1 + b_1(x - 7) + c_1(x - 7)^2 + d_1(x - 7)^3 \]

Since there are 8 coefficients, we must derive 8 equations to solve.
This will require two cubics:

\[S_0(x) = a_0 + b_0(x - 5) + c_0(x - 5)^2 + d_0(x - 5)^3 \]
\[S_1(x) = a_1 + b_1(x - 7) + c_1(x - 7)^2 + d_1(x - 7)^3 \]

Since there are 8 coefficients, we must derive 8 equations to solve.

The splines must agree with the function (the \(y \)-coordinates) at the nodes (the \(x \)-coordinates).

\[
\begin{align*}
5 & = S_0(5) = a_0 \\
2 & = S_0(7) = a_0 + 2b_0 + 4c_0 + 8d_0 \\
2 & = S_1(7) = a_1 \\
4 & = S_1(9) = a_1 + 2b_1 + 4c_1 + 8d_1
\end{align*}
\]
The first and second derivatives of the cubics must agree at their shared node $x = 7$.

\[
S'_0(7) = b_0 + 4c_0 + 12d_0 = b_1 = S'_1(7)
\]
\[
S''_0(7) = 2c_0 + 12d_0 = 2c_1 = S''_1(7)
\]
The first and second derivatives of the cubics must agree at their shared node \(x = 7 \).

\[
S'_0(7) = b_0 + 4c_0 + 12d_0 = b_1 = S'_1(7)
\]
\[
S''_0(7) = 2c_0 + 12d_0 = 2c_1 = S''_1(7)
\]

The final two equations come from the natural boundary conditions.

\[
S''_0(5) = 0 = 2c_0
\]
\[
S''_1(9) = 0 = 2c_1 + 12d_1
\]
All eight linear equations together form the system:

\[
\begin{align*}
5 & = a_0 \\
2 & = a_0 + 2b_0 + 4c_0 + 8d_0 \\
2 & = a_1 \\
4 & = a_1 + 2b_1 + 4c_1 + 8d_1 \\
0 & = b_0 + 4c_0 + 12d_0 - b_1 \\
0 & = 2c_0 + 12d_0 - 2c_1 \\
0 & = 2c_0 \\
0 & = 2c_1 + 12d_1
\end{align*}
\]
The solution is:

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>$-\frac{17}{8}$</td>
<td>0</td>
<td>$\frac{5}{32}$</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$-\frac{1}{4}$</td>
<td>15</td>
<td>$-\frac{5}{32}$</td>
</tr>
</tbody>
</table>
The natural cubic spline can be expressed as:

\[S(x) = \begin{cases}
5 - \frac{17}{8} (x - 5) + \frac{5}{32} (x - 5)^3 & \text{if } 5 \leq x \leq 7 \\
2 - \frac{1}{4} (x - 7) + \frac{15}{16} (x - 7)^2 - \frac{5}{32} (x - 7)^3 & \text{if } 7 \leq x \leq 9
\end{cases} \]
We can verify the continuity of the first and second derivatives from the following graphs.
Given \(n + 1 \) nodal/data values:
\[\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\} \]
we will create \(n \) cubic polynomials.
Given $n + 1$ nodal/data values:
$\{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}$ we will create n cubic polynomials.

For $j = 0, 1, \ldots, n - 1$ assume

$$S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3.$$

We must find a_j, b_j, c_j and d_j (a total of $4n$ unknowns) subject to the conditions specified in the definition.
First Set of Equations

Let \(h_j = x_{j+1} - x_j \) then

\[
S_j(x_j) = a_j = f(x_j)
\]

\[
S_{j+1}(x_{j+1}) = a_{j+1} = S_j(x_{j+1}) = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3.
\]

So far we know \(a_j \) for \(j = 0, 1, \ldots, n - 1 \) and have \(n \) equations and \(3n \) unknowns.

\[
a_1 = a_0 + b_0 h_0 + c_0 h_0^2 + d_0 h_0^3
\]

\[\vdots\]

\[
a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3
\]

\[\vdots\]

\[
a_n = a_{n-1} + b_{n-1} h_{n-1} + c_{n-1} h_{n-1}^2 + d_{n-1} h_{n-1}^3
\]
The continuity of the first derivative at the nodal points produces \(n \) more equations.

For \(j = 0, 1, \ldots, n - 1 \) we have

\[
S'_j(x) = b_j + 2c_j(x - x_j) + 3d_j(x - x_j)^2.
\]

Thus

\[
S'_j(x_j) = b_j
\]

\[
S'_{j+1}(x_{j+1}) = b_{j+1} = S'_j(x_{j+1}) = b_j + 2c_j h_j + 3d_j h_j^2
\]

Now we have \(2n \) equations and \(3n \) unknowns.
Equations Derived So Far

\[a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \quad \text{(for } j = 0, 1, \ldots, n - 1) \]
\[b_1 = b_0 + 2c_0 h_0 + 3d_0 h_0^2 \]
\[\vdots \]
\[b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2 \]
\[\vdots \]
\[b_n = b_{n-1} + 2c_{n-1} h_{n-1} + 3d_{n-1} h_{n-1}^2 \]

The unknowns are \(b_j, \ c_j, \) and \(d_j \) for \(j = 0, 1, \ldots, n - 1.\)
The continuity of the second derivative at the nodal points produces n more equations. For $j = 0, 1, \ldots, n - 1$ we have

$$S_j''(x) = 2c_j + 6d_j(x - x_j).$$

Thus

$$S_j''(x_j) = 2c_j$$
$$S_{j+1}''(x_{j+1}) = 2c_{j+1} = S_j''(x_{j+1}) = 2c_j + 6d_j h_j$$

Now we have $3n$ equations and $3n$ unknowns.
Equations Derived So Far

\[a_{j+1} = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \quad (\text{for } j = 0, 1, \ldots, n - 1) \]
\[b_{j+1} = b_j + 2c_j h_j + 3d_j h_j^2 \quad (\text{for } j = 0, 1, \ldots, n - 1) \]
\[2c_1 = 2c_0 + 6d_0 h_0 \]
\[\vdots \]
\[2c_{j+1} = 2c_j + 6d_j h_j \]
\[\vdots \]
\[2c_n = 2c_{n-1} + 6d_{n-1} h_{n-1} \]

The unknowns are \(b_j, c_j, \) and \(d_j \) for \(j = 0, 1, \ldots, n - 1. \)
For $j = 0, 1, \ldots, n - 1$ we have

\begin{align*}
a_{j+1} &= a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \\
b_{j+1} &= b_j + 2c_j h_j + 3d_j h_j^2 \\
c_{j+1} &= c_j + 3d_j h_j.
\end{align*}

Note: The quantities a_j and h_j are known.
For $j = 0, 1, \ldots, n - 1$ we have

\[
\begin{align*}
 a_{j+1} & = a_j + b_j h_j + c_j h_j^2 + d_j h_j^3 \\
 b_{j+1} & = b_j + 2c_j h_j + 3d_j h_j^2 \\
 c_{j+1} & = c_j + 3d_j h_j.
\end{align*}
\]

Note: The quantities a_j and h_j are known.
Solve the third equation for d_j and substitute into the other two equations.

\[
d_j = \frac{c_{j+1} - c_j}{3h_j}
\]

This eliminates n equations of the third type.
Solving the Equations (1 of 3)

\[a_{j+1} = a_j + b_j h_j + c_j h_j^2 + \left(\frac{c_{j+1} - c_j}{3h_j} \right) h_j^3 \]

\[= a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}) \]

\[b_{j+1} = b_j + 2c_j h_j + 3 \left(\frac{c_{j+1} - c_j}{3h_j} \right) h_j^2 \]

\[= b_j + h_j (c_j + c_{j+1}) \]
Solving the Equations (1 of 3)

\[a_{j+1} = a_j + b_j h_j + c_j h_j^2 + \left(\frac{c_{j+1} - c_j}{3h_j} \right) h_j^3 \]

\[= a_j + b_j h_j + \frac{h_j^2}{3} (2c_j + c_{j+1}) \]

\[b_{j+1} = b_j + 2c_j h_j + 3 \left(\frac{c_{j+1} - c_j}{3h_j} \right) h_j^2 \]

\[= b_j + h_j (c_j + c_{j+1}) \]

Solve the first equation for \(b_j \).

\[b_j = \frac{1}{h_j} (a_{j+1} - a_j) - \frac{h_j}{3} (2c_j + c_{j+1}) \]
Replace index j by $j - 1$ to obtain

$$b_{j-1} = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j).$$
Replace index j by $j - 1$ to obtain

$$b_{j-1} = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j).$$

We can also re-index the earlier equation

$$b_{j+1} = b_j + h_j(c_j + c_{j+1})$$

to obtain

$$b_j = b_{j-1} + h_{j-1}(c_{j-1} + c_j).$$

Substitute the equations for b_{j-1} and b_j into the remaining equation. This step eliminate n equations of the first type.
\[
\frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1})
= \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j) + h_{j-1}(c_{j-1} + c_j)
\]

Collect all terms involving \(c\) to one side.

\[
h_{j-1}c_{j-1} + 2c_j(h_{j-1} + h_j) + h_jc_{j+1} = \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})
\]

for \(j = 1, 2, \ldots, n - 1\).
Collect all terms involving \(c \) to one side.

\[
\frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(2c_j + c_{j+1}) = \frac{1}{h_{j-1}}(a_j - a_{j-1}) - \frac{h_{j-1}}{3}(2c_{j-1} + c_j) + h_{j-1}(c_{j-1} + c_j)
\]

for \(j = 1, 2, \ldots, n - 1 \).

Remark: we have \(n - 1 \) equations and \(n + 1 \) unknowns.
Natural Boundary Conditions

If \(S''(x_0) = S''_0(x_0) = 2c_0 = 0 \) then \(c_0 = 0 \) and if \(S''(x_n) = S''_{n-1}(x_n) = 2c_n = 0 \) then \(c_n = 0 \).
If $S''(x_0) = S_0''(x_0) = 2c_0 = 0$ then $c_0 = 0$ and if
$S''(x_n) = S_{n-1}''(x_n) = 2c_n = 0$ then $c_n = 0$.

Theorem

If f is defined at $a = x_0 < x_1 < \cdots < x_n = b$ then f has a unique natural cubic spline interpolant.
In matrix form the system of \(n + 1 \) equations has the form
\[A \mathbf{c} = \mathbf{y} \]
where

\[
A = \begin{bmatrix}
1 & 0 & 0 & 0 & \cdots & 0 \\
h_0 & 2(h_0 + h_1) & h_1 & 0 & \cdots & 0 \\
0 & h_1 & 2(h_1 + h_2) & h_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & h_{n-2} & 2(h_{n-2} + h_{n-1}) & h_{n-1} \\
0 & 0 & 0 & 0 & \cdots & 1 \\
\end{bmatrix}
\]

Note: \(A \) is a tridiagonal matrix.
The vector \mathbf{y} on the right-hand side is formed as

$$\mathbf{y} = \begin{bmatrix} 0 \\ \frac{3}{h_1} (a_2 - a_1) - \frac{3}{h_0} (a_1 - a_0) \\ \frac{3}{h_2} (a_3 - a_2) - \frac{3}{h_1} (a_2 - a_1) \\ \vdots \\ \frac{3}{h_{n-1}} (a_n - a_{n-1}) - \frac{3}{h_{n-2}} (a_{n-1} - a_{n-2}) \\ 0 \end{bmatrix}$$

Note: A is a tridiagonal matrix.
Natural BC Linear System (3 of 3)

We solve this linear system of equations using a common algorithm for handling tridiagonal systems.
Natural Cubic Spline Algorithm

INPUT \{(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n))\}

STEP 1 For \(i = 0, 1, \ldots, n - 1\) set \(a_i = f(x_i)\); set \(h_i = x_{i+1} - x_i\).

STEP 2 For \(i = 1, 2, \ldots, n - 1\) set

\[
\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}).
\]

STEP 3 Set \(l_0 = 1\); set \(\mu_0 = 0\); set \(z_0 = 0\).

STEP 4 For \(i = 1, 2, \ldots, n - 1\) set

\[
l_i = 2(x_{i+1} - x_{i-1}) - h_{i-1}\mu_{i-1}; \text{ set } \mu_i = \frac{h_i}{l_i}; \text{ set }
\]

\[
z_i = \frac{\alpha_i - h_{i-1}z_{i-1}}{l_i}.
\]

STEP 5 Set \(l_n = 1\); set \(c_n = 0\); set \(z_n = 0\).

STEP 6 For \(j = n - 1, n - 2, \ldots, 0\) set \(c_j = z_j - \mu_j c_{j+1}\); set

\[
b_j = \frac{a_{j+1} - a_j}{h_j} - \frac{h_j(c_{j+1} + 2c_j)}{3}; \text{ set } d_j = \frac{c_{j+1} - c_j}{3h_j}.
\]

STEP 7 For \(j = 0, 1, \ldots, n - 1\) OUTPUT \(a_j, b_j, c_j, d_j\).
Construct the natural cubic spline interpolant for
\(f(x) = \ln(e^x + 2) \) with nodal values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1.0</td>
<td>0.86199480</td>
</tr>
<tr>
<td>−0.5</td>
<td>0.95802009</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0986123</td>
</tr>
<tr>
<td>0.5</td>
<td>1.2943767</td>
</tr>
</tbody>
</table>

Calculate the absolute error in using the interpolant to approximate \(f(0.25) \) and \(f'(0.25) \).
In this case $n = 3$ and

$$h_0 = h_1 = h_2 = 0.5$$

with

$$a_0 = 0.86199480, \quad a_1 = 0.95802009,$$

$$a_2 = 1.0986123, \quad a_3 = 1.2943767.$$

The linear system resembles,

$$A c = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 \\ 0.5 & 2.0 & 0.5 & 0.0 \\ 0.0 & 0.5 & 2.0 & 0.5 \\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0.0 \\ 0.267402 \\ 0.331034 \\ 0.0 \end{bmatrix} = y$$
The coefficients of the piecewise cubics:

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.861995</td>
<td>0.175638</td>
<td>0.0</td>
<td>0.0656509</td>
</tr>
<tr>
<td>1</td>
<td>0.95802</td>
<td>0.224876</td>
<td>0.0984763</td>
<td>0.028281</td>
</tr>
<tr>
<td>2</td>
<td>1.09861</td>
<td>0.344563</td>
<td>0.140898</td>
<td>−0.093918</td>
</tr>
</tbody>
</table>
The coefficients of the piecewise cubics:

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.861995</td>
<td>0.175638</td>
<td>0.0</td>
<td>0.0656509</td>
</tr>
<tr>
<td>1</td>
<td>0.95802</td>
<td>0.224876</td>
<td>0.0984763</td>
<td>0.028281</td>
</tr>
<tr>
<td>2</td>
<td>1.09861</td>
<td>0.344563</td>
<td>0.140898</td>
<td>−0.093918</td>
</tr>
</tbody>
</table>

The cubic spline:

$$S(x) = \begin{cases}
0.861995 + 0.175638(x + 1) + 0.0656509(x + 1)^3 & \text{if } -1 \leq x \leq -0.5 \\
0.95802 + 0.224876(x + 0.5) + 0.0984763(x + 0.5)^2 + 0.028281(x + 0.5)^3 & \text{if } -0.5 \leq x \leq 0 \\
1.09861 + 0.344563x + 0.140898x^2 - 0.093918x^3 & \text{if } 0 \leq x \leq 0.5
\end{cases}$$
Example (4 of 4)

Cubic Spline Interpolation

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>-0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>-0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.8</td>
</tr>
<tr>
<td>-0.2</td>
<td>1.0</td>
</tr>
<tr>
<td>0.2</td>
<td>1.2</td>
</tr>
<tr>
<td>0.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f(x)</th>
<th>S(x)</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.18907</td>
<td>1.19209</td>
<td>3.02154 x 10^{-3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f'(x)</th>
<th>S'(x)</th>
<th>Abs. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.390991</td>
<td>0.3974</td>
<td>6.40839 x 10^{-3}</td>
</tr>
</tbody>
</table>
If $S'(a) = S'_0(a) = f'(a) = b_0$ then

$$f'(a) = \frac{1}{h_0}(a_1 - a_0) - \frac{h_0}{3}(2c_0 + c_1)$$

which is equivalent to

$$h_0(2c_0 + c_1) = \frac{3}{h_0}(a_1 - a_0) - 3f'(a).$$

This replaces the first equation in our system of n equations.
Likewise if \(S'(b) = S'_n(b) = f'(b) = b_n \) then

\[
b_n = b_{n-1} + h_{n-1}(c_{n-1} + c_n)
\]

\[
= \frac{1}{h_{n-1}}(a_n - a_{n-1}) - \frac{h_{n-1}}{3}(2c_{n-1} + c_n) + h_{n-1}(c_{n-1} + c_n)
\]

\[
= \frac{1}{h_{n-1}}(a_n - a_{n-1}) + \frac{h_{n-1}}{3}(c_{n-1} + 2c_n)
\]

which is equivalent to

\[
h_{n-1}(c_{n-1} + 2c_n) = 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1}).
\]

This replaces the last equation in our system of \(n \) equations.
Theorem

If \(f \) is defined at \(a = x_0 < x_1 < \cdots < x_n = b \) and differentiable at \(x = a \) and at \(x = b \), then \(f \) has a unique clamped cubic spline interpolant.

In matrix form the system of \(n \) equations has the form \(Ac = y \) where

\[
A = \begin{bmatrix}
2h_0 & h_0 & 0 & 0 & \cdots & 0 \\
h_0 & 2(h_0+h_1) & h_1 & 0 & \cdots & 0 \\
0 & h_1 & 2(h_1+h_2) & h_2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & h_{n-2} & 2(h_{n-2}+h_{n-1}) & h_{n-1} \\
0 & 0 & 0 & 0 & \cdots & 2h_{n-1}
\end{bmatrix}
\]

Note: \(A \) is a tridiagonal matrix.
\[
A \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 \vdots \\
 c_{n-1} \\
 c_n
\end{bmatrix} = \begin{bmatrix}
 \frac{3}{h_0}(a_1 - a_0) - 3f'(a) \\
 \frac{3}{h_1}(a_2 - a_1) - \frac{3}{h_0}(a_1 - a_0) \\
 \frac{3}{h_2}(a_3 - a_2) - \frac{3}{h_1}(a_2 - a_1) \\
 \vdots \\
 \frac{3}{h_{n-1}}(a_n - a_{n-1}) - \frac{3}{h_{n-2}}(a_{n-1} - a_{n-2}) \\
 3f'(b) - \frac{3}{h_{n-1}}(a_n - a_{n-1})
\end{bmatrix}
\]
Since a_j for $j = 0, 1, \ldots, n$ is known, once we solve the linear system for c_j (again for $j = 0, 1, \ldots, n$) then

\[
\begin{align*}
 b_j &= \frac{1}{h_j}(a_{j+1} - a_j) - \frac{h_j}{3}(c_{j+1} + 2c_j) \\
 d_j &= \frac{1}{3h_j}(c_{j+1} - c_j)
\end{align*}
\]

for $j = 0, 1, \ldots, n - 1$.
INPUT \{ (x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)) \}, f'(x_0), \text{ and } f'(x_n).

STEP 1 For \(i = 0, 1, \ldots, n - 1 \) set \(a_i = f(x_i) \); set \(h_i = x_{i+1} - x_i \).

STEP 2 Set \(\alpha_0 = \frac{3(a_1 - a_0)}{h_0} - 3f'(x_0) \)

\[
\alpha_n = 3f'(x_n) - \frac{3(a_n - a_{n-1})}{h_{n-1}}.
\]

STEP 3 For \(i = 1, 2, \ldots, n - 1 \) set

\[
\alpha_i = \frac{3}{h_i}(a_{i+1} - a_i) - \frac{3}{h_{i-1}}(a_i - a_{i-1}).
\]

STEP 4 Set \(l_0 = 2h_0 \); \(\mu_0 = 0.5 \); \(z_0 = \frac{\alpha_0}{l_0} \).
STEP 5 For \(i = 1, 2, \ldots, n - 1 \) set
\[
I_i = 2(x_{i+1} - x_i) - h_{i-1}\mu_{i-1}; \quad \mu_i = \frac{h_i}{l_i};
\]
\[
z_i = \frac{\alpha_i - h_{i-1}z_{i-1}}{l_i}.
\]

STEP 6 Set \(I_n = h_{n-1}(2 - \mu_{n-1}) \); \(z_n = \frac{\alpha_n - h_{n-1}z_{n-1}}{I_n} \);
\(c_n = z_n \).

STEP 7 For \(j = n - 1, n - 2, \ldots, 0 \) set \(c_j = z_j - \mu_j c_{j+1} \);
\[
b_j = \frac{a_{j+1} - a_j}{h_j} - \frac{h_j (c_{j+1} + 2c_j)}{3};
\]
\[
d_j = \frac{c_{j+1} - c_j}{3h_j}.
\]

STEP 8 For \(j = 0, 1, \ldots, n - 1 \) OUTPUT \(a_j, b_j, c_j, d_j \).
Construct the clamped cubic spline interpolant for
\(f(x) = \ln(e^x + 2) \) with nodal values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1.0)</td>
<td>0.86199480</td>
</tr>
<tr>
<td>(-0.5)</td>
<td>0.95802009</td>
</tr>
<tr>
<td>0.0</td>
<td>1.0986123</td>
</tr>
<tr>
<td>0.5</td>
<td>1.2943767</td>
</tr>
</tbody>
</table>

Calculate the absolute error in using the interpolant to approximate \(f(0.25) \) and \(f'(0.25) \).
In this case \(n = 3 \) and

\[
h_0 = h_1 = h_2 = 0.5
\]

with

\[
a_0 = 0.86199480, \quad a_1 = 0.95802009, \quad a_2 = 1.0986123, \quad a_3 = 1.2943767.
\]

Note that \(f'(-1) \approx 0.155362 \) and \(f'(0.5) \approx 0.451863 \).

The linear system resembles,

\[
\begin{bmatrix}
1.0 & 0.5 & 0.0 & 0.0 \\
0.5 & 2.0 & 0.5 & 0.0 \\
0.0 & 0.5 & 2.0 & 0.5 \\
0.0 & 0.0 & 0.5 & 1.0 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3 \\
\end{bmatrix}
= \begin{bmatrix}
0.110064 \\
0.267402 \\
0.331034 \\
0.181001 \\
\end{bmatrix}
= \mathbf{y}.
\]
The coefficients of the piecewise cubics:

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.861995</td>
<td>0.155362</td>
<td>0.0653748</td>
<td>0.0160031</td>
</tr>
<tr>
<td>1</td>
<td>0.95802</td>
<td>0.23274</td>
<td>0.0893795</td>
<td>0.0150207</td>
</tr>
<tr>
<td>2</td>
<td>1.09861</td>
<td>0.333384</td>
<td>0.11191</td>
<td>0.00875717</td>
</tr>
</tbody>
</table>
Example (3 of 4)

The coefficients of the piecewise cubics:

<table>
<thead>
<tr>
<th>i</th>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.861995</td>
<td>0.155362</td>
<td>0.0653748</td>
<td>0.0160031</td>
</tr>
<tr>
<td>1</td>
<td>0.95802</td>
<td>0.23274</td>
<td>0.0893795</td>
<td>0.0150207</td>
</tr>
<tr>
<td>2</td>
<td>1.09861</td>
<td>0.333384</td>
<td>0.11191</td>
<td>0.00875717</td>
</tr>
</tbody>
</table>

The cubic spline:

$$S(x) = \begin{cases}
0.861995 + 0.155362(x + 1) \\
+ 0.0653748(x + 1)^2 \\
+ 0.0160031(x + 1)^3 & \text{if } -1 \leq x \leq -0.5 \\
0.95802 + 0.23274(x + 0.5) \\
+ 0.0893795(x + 0.5)^2 \\
+ 0.0150207(x + 0.5)^3 & \text{if } -0.5 \leq x \leq 0 \\
1.09861 + 0.333384x + 0.11191x^2 \\
+ 0.00875717x^3 & \text{if } 0 \leq x \leq 0.5
\end{cases}$$
Example (4 of 4)

Cubic Spline Interpolation

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(0.25)$</td>
<td>$S(0.25)$</td>
<td>Abs. Err.</td>
<td>$f'(0.25)$</td>
<td>$S'(0.25)$</td>
</tr>
<tr>
<td>1.18907</td>
<td>1.18991</td>
<td>1.97037×10^{-5}</td>
<td>0.390991</td>
<td>0.390982</td>
</tr>
</tbody>
</table>
Error Analysis

Theorem

Let $f \in C^4[a, b]$ with $\max_{a \leq x \leq b} \left| f^{(4)}(x) \right| = M$. If S is the unique clamped cubic spline interpolant to f with respect to nodes $a = x_0 < x_1 < \cdots < x_n = b$, then for all $x \in [a, b]$,

$$|f(x) - S(x)| \leq \frac{5M}{384} \max_{0 \leq j \leq n-1} (x_{j+1} - x_j)^4.$$
Earlier we found the clamped cubic spline interpolant for $f(x) = \ln(e^x + 2)$. In this example $x_{j+1} - x_j = 0.5$ for all j.

Note that

$$f^{(4)}(x) = \frac{2e^x(4 - 8e^x + e^{2x})}{(2 + e^x)^4}$$

$$\max_{-1 \leq x \leq 0.5} |f^{(4)}(x)| \approx 0.120398$$

$$|f(0.25) - S(0.25)| \approx 1.97037 \times 10^{-5}$$

$$\lesssim \frac{5(0.120398)}{384}(0.5)^4$$

$$\approx 9.798 \times 10^{-5}.$$
Consider the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>−0.5</td>
<td>−0.02475</td>
</tr>
<tr>
<td>−0.25</td>
<td>0.334938</td>
</tr>
<tr>
<td>0.0</td>
<td>1.101</td>
</tr>
</tbody>
</table>

The linear system takes the form

$$ A c = y $$

$$
\begin{bmatrix}
1.00 & 0.00 & 0.00 \\
0.25 & 1.00 & 0.25 \\
0.00 & 0.00 & 1.00 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\end{bmatrix}
=
\begin{bmatrix}
0.00 \\
4.8765 \\
0.00 \\
\end{bmatrix}
$$
The coefficients of the natural cubic spline interpolant are

\[
\begin{array}{cccc}
 a_i & b_i & c_i & d_i \\
 -0.02475 & 1.03238 & 0.0 & 6.502 \\
 0.334938 & 2.2515 & 4.8765 & -6.502 \\
\end{array}
\]

and the piecewise cubic is

\[
S(x) = \begin{cases}
-0.02475 + 1.03238(x + 0.5) + 6.502(x + 0.05)^3 & \text{if } -0.5 \leq x \leq -0.25 \\
0.334938 + 2.2515(x + 0.25) + 4.8765(x + 0.25)^2 - 6.502(x + 0.25)^3 & \text{if } -0.25 \leq x \leq 0.
\end{cases}
\]
Natural Cubic Spline Example (3 of 3)

Cubic Spline Interpolation

\[f(x) \]

\[-0.5 \quad -0.4 \quad -0.3 \quad -0.2 \quad -0.1 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]
Here we will find the clamped cubic spline interpolant to the function \(f(x) = J_0(\sqrt{x}) \) at the nodes \(x_i = 5i \) for \(i = 0, 1, \ldots, 10 \).

\[
\begin{array}{cc}
 x & f(x) \\
 0.0 & 1.0 \\
 5.0 & 0.0904053 \\
10.0 & -0.310045 \\
 & \\
50.0 & 0.299655 \\
\end{array}
\]

Note: \(f'(0) = -0.25 \) and \(f'(50) = -0.00117217 \).
The tridiagonal linear system takes the following form

\[
\begin{bmatrix}
10 & 5 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
5 & 20 & 5 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 5 & 20 & 5 & \ldots & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & 0 & \ldots & 5 & 20 & 5 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 5 & 20 & 5 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 5 & 10 \\
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
\vdots \\
c_8 \\
c_9 \\
c_{10} \\
\end{bmatrix}
=
\begin{bmatrix}
0.204243 \\
0.305487 \\
0.184846 \\
0.100749 \\
0.044242 \\
0.008211 \\
-0.012944 \\
-0.023582 \\
-0.027056 \\
-0.025905 \\
-0.011808 \\
\end{bmatrix}.
\]
The coefficients of the clamped cubic spline interpolant are

<table>
<thead>
<tr>
<th>a_i</th>
<th>b_i</th>
<th>c_i</th>
<th>d_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−0.25</td>
<td>0.0154655</td>
<td>−0.00036986</td>
</tr>
<tr>
<td>0.09040533</td>
<td>−0.1230843</td>
<td>0.009917643</td>
<td>−0.0002637577</td>
</tr>
<tr>
<td>−0.3100448</td>
<td>−0.0436897</td>
<td>0.005961278</td>
<td>−0.0001836499</td>
</tr>
<tr>
<td>−0.4024176</td>
<td>0.00214934</td>
<td>0.003206529</td>
<td>−0.0001229411</td>
</tr>
<tr>
<td>−0.3268753</td>
<td>0.02499404</td>
<td>0.001362412</td>
<td>−0.0000780158</td>
</tr>
<tr>
<td>−0.1775968</td>
<td>0.03276697</td>
<td>0.000192174</td>
<td>−0.0000454083</td>
</tr>
<tr>
<td>−0.0146336</td>
<td>0.03128308</td>
<td>−0.00048895</td>
<td>−0.0000224102</td>
</tr>
<tr>
<td>0.12675676</td>
<td>0.02471281</td>
<td>−0.00082510</td>
<td>−6.79522 × 10^{-6}</td>
</tr>
<tr>
<td>0.22884382</td>
<td>0.01595213</td>
<td>−0.00092703</td>
<td>3.265389 × 10^{-6}</td>
</tr>
<tr>
<td>0.28583684</td>
<td>0.00692671</td>
<td>−0.00087805</td>
<td>9.088463 × 10^{-6}</td>
</tr>
</tbody>
</table>
Homework

- Read Section 3.5
- Exercises: 1, 3d, 5d, 7d, 31