Linear Systems of Equations
MATH 375

J. Robert Buchanan

Department of Mathematics

Fall 2013
Linear systems are equations of the form:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
 a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
 \vdots \\
 a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}
\]
Linear systems are equations of the form:

\begin{align*}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n &= b_2 \\
&\quad \vdots \\
a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n &= b_n
\end{align*}

- The coefficients \(a_{ij} \) for \(i, j = 1, 2, \ldots, n \) are constants.
- The expressions \(b_i \) for \(i = 1, 2, \ldots, n \) are constant.
- The unknowns are \(x_i \) for \(i = 1, 2, \ldots, n \).
We will study **direct methods** for solving such systems of linear equations.

Direct methods can solve a linear system in a **predictable**, **fixed** number of steps.

We will employ the following operations to solve linear systems:

- An equation can be replaced by a nonzero multiple of itself.
- An equation can be replaced by the sum of itself and another equation.
- Any two equations can be swapped.
Use of these elementary operations will enable us to convert a linear system into an equivalent linear system in **reduced** or **triangular** form. Then **back-substitution** can be used to solve the equivalent system.

Example

Derive the equivalent linear system in triangular form.

\[
\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
x_1 + x_2 - 3x_3 &= -9 \\
4x_1 + x_2 + 2x_3 &= 9
\end{align*}
\]
Use of these elementary operations will enable us to convert a linear system into an equivalent linear system in reduced or triangular form. Then back-substitution can be used to solve the equivalent system.

Example

Derive the equivalent linear system in triangular form.

\[
\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
x_1 + x_2 - 3x_3 &= -9 \\
4x_1 + x_2 + 2x_3 &= 9
\end{align*}
\]
\[\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
x_1 + x_2 - 3x_3 &= -9 \quad \text{(mult. 1st by } \frac{1}{2}, \text{ subt.)} \\
4x_1 + x_2 + 2x_3 &= 9 \quad \text{(mult. 1st by 2, subt.)}
\end{align*} \]
Solution (1 of 2)

\[
\begin{align*}
2x_1 + 4x_2 - x_3 & = -5 \\
 x_1 + x_2 - 3x_3 & = -9 \quad \text{(mult. 1st by } \frac{1}{2}, \text{ subt.)} \\
4x_1 + x_2 + 2x_3 & = 9 \quad \text{(mult. 1st by 2, subt.)}
\end{align*}
\]

\[
\begin{align*}
2x_1 + 4x_2 - x_3 & = -5 \\
-x_2 - \frac{5}{2}x_3 & = -\frac{13}{2} \\
-7x_2 + 4x_3 & = 19 \quad \text{(mult. 2nd by 7, subt.)}
\end{align*}
\]
Solution (1 of 2)

\[\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
x_1 + x_2 - 3x_3 &= -9 \quad \text{(mult. 1st by } \frac{1}{2}, \text{ subt.)} \\
4x_1 + x_2 + 2x_3 &= 9 \quad \text{(mult. 1st by 2, subt.)}
\end{align*}\]

\[\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
-x_2 - \frac{5}{2}x_3 &= -\frac{13}{2} \\
-7x_2 + 4x_3 &= 19 \quad \text{(mult. 2nd by 7, subt.)}
\end{align*}\]

\[\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
-x_2 - \frac{5}{2}x_3 &= -\frac{13}{2} \quad \text{(mult. by } -1) \\
\frac{43}{2}x_3 &= \frac{129}{2}
\end{align*}\]
\[2x_1 + 4x_2 - x_3 = -5 \]
\[x_2 + \frac{5}{2}x_3 = \frac{13}{2} \quad \text{(mult. by 2)} \]
\[\frac{43}{2}x_3 = \frac{129}{2} \quad \text{(mult. by 2)} \]
\[2x_1 + 4x_2 - x_3 = -5 \]
\[x_2 + \frac{5}{2}x_3 = \frac{13}{2} \quad \text{(mult. by 2)} \]
\[\frac{43}{2}x_3 = \frac{129}{2} \quad \text{(mult. by 2)} \]

\[2x_1 + 4x_2 - x_3 = -5 \]
\[2x_2 + 5x_3 = 13 \]
\[43x_3 = 129 \]
\[\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
x_2 + \frac{5}{2}x_3 &= \frac{13}{2} \quad \text{(mult. by 2)} \\
\frac{43}{2}x_3 &= \frac{129}{2} \quad \text{(mult. by 2)}
\end{align*}\]

The final linear system is in triangular (reduced) form.
Solving for \((x_1, x_2, x_3)\)

\[
\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
2x_2 + 5x_3 &= 13 \\
43x_3 &= 129
\end{align*}
\]

1. We may solve the 3rd equation for \(x_3\) and substitute this result into the 1st and 2nd equations.
2. We may solve the 2nd equation for \(x_2\) and substitute this result into the 1st equation.
3. We may solve the 1st equation for \(x_1\).
Solving for \((x_1, x_2, x_3)\)

\[
\begin{align*}
2x_1 + 4x_2 - x_3 &= -5 \\
2x_2 + 5x_3 &= 13 \\
43x_3 &= 129
\end{align*}
\]

1. We may solve the 3rd equation for \(x_3\) and substitute this result into the 1st and 2nd equations.
2. We may solve the 2nd equation for \(x_2\) and substitute this result into the 1st equation.
3. We may solve the 1st equation for \(x_1\).

\[
x_3 = \frac{129}{43} = 3
\]

\[
2x_2 + 5(3) = 13 \quad \implies \quad x_2 = -1
\]

\[
2x_1 + 4(-1) - 3 = -5 \quad \implies \quad x_1 = 1
\]
Matrix Notation

Since we only manipulated the constants and coefficients of the linear system, we only need keep track of them and can suppress the unknowns.
Since we only manipulated the constants and coefficients of the linear system, we only need keep track of them and can suppress the unknowns.

Notation:

\[
A = [a_{ij}] = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1m} \\
 a_{21} & a_{22} & \cdots & a_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nm}
\end{bmatrix}
\]

is called an \(n \times m \) **matrix**.
A $1 \times n$ matrix

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n}
\end{bmatrix}
\]

is called a **row vector**.

An $n \times 1$ matrix

\[
\begin{bmatrix}
a_{11} \\
a_{21} \\
\vdots \\
a_{n1}
\end{bmatrix}
\]

is called a **column vector**.
Vectors

A $1 \times n$ matrix

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n}
\end{bmatrix}
\]

is called a **row vector**.

An $n \times 1$ matrix

\[
\begin{bmatrix}
 a_{11} \\
 a_{21} \\
 \vdots \\
 a_{n1}
\end{bmatrix}
\]

is called a **column vector**.

Remark: we can represent any linear system with an $n \times n$ matrix and an $n \times 1$ column vector.
The linear system of the form:

\[a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \]
\[a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \]
\[\vdots \]
\[a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n \]

will often be represented by an \(n \times (n + 1) \) augmented matrix:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\
 a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 a_{n1} & a_{n2} & \cdots & a_{nn} & b_n \\
\end{bmatrix}
= \tilde{A}.
\]
Reducing the A portion of an augmented matrix to triangular form and then using back substitution to solve the linear system is called **Gaussian elimination with back substitution.**
Reducing the A portion of an augmented matrix to triangular form and then using back substitution to solve the linear system is called **Gaussian elimination with back substitution**.

Assuming that for some $i \in \{1, 2, \ldots, n\}$ we have $a_{i1} \neq 0$ the reduced form of \tilde{A} resembles the following.

\[
\tilde{A} = \begin{bmatrix}
\tilde{a}_{11} & \tilde{a}_{12} & \cdots & \tilde{a}_{1n} & \tilde{b}_1 \\
0 & \tilde{a}_{22} & \cdots & \tilde{a}_{2n} & \tilde{b}_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \tilde{a}_{nn} & \tilde{b}_n
\end{bmatrix}
\]
Back Substitution

Given

\[
\begin{bmatrix}
\tilde{a}_{11} & \tilde{a}_{12} & \cdots & \tilde{a}_{1n} & \tilde{b}_1 \\
0 & \tilde{a}_{22} & \cdots & \tilde{a}_{2n} & \tilde{b}_2 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \tilde{a}_{nn} & \tilde{b}_n \\
\end{bmatrix},
\]

we have the solution:

\[
\begin{align*}
x_n &= \frac{\tilde{b}_n}{\tilde{a}_{nn}} \\
\vdots \\
x_i &= \frac{\tilde{b}_i - \tilde{a}_{in}x_n - \tilde{a}_{i,n-1}x_{n-1} - \cdots - \tilde{a}_{i,i+1}x_{i+1}}{\tilde{a}_{ii}} = \frac{\tilde{b}_i - \sum_{j=i+1}^n \tilde{a}_{ij}x_j}{\tilde{a}_{ii}} \\
\vdots \\
x_1 &= \frac{\tilde{b}_1 - \tilde{a}_{1n}x_n - \tilde{a}_{1,n-1}x_{n-1} - \cdots - \tilde{a}_{12}x_2}{\tilde{a}_{11}} = \frac{\tilde{b}_1 - \sum_{j=2}^n \tilde{a}_{1j}x_j}{\tilde{a}_{11}}
\end{align*}
\]
Comment: at each stage of the reduction process we have assumed that $\tilde{a}_{ii} \neq 0$. If we encounter $\tilde{a}_{ii} = 0$ then we look for $j > i$ (a lower row) such that $\tilde{a}_{ji} \neq 0$ and swap rows i and j.

Use Gaussian elimination with back substitution to solve the following linear system given in augmented matrix form.

\[
\begin{bmatrix}
1 & -1 & 3 \\
2 & 3 & -1 \\
1 & 1 & 0 \end{bmatrix}
\begin{bmatrix}
J. Robert Buchanan
Linear Systems of Equations
\end{bmatrix}
\]
Comment: at each stage of the reduction process we have assumed that \(\tilde{a}_{ii} \neq 0 \). If we encounter \(\tilde{a}_{ii} = 0 \) then we look for \(j > i \) (a lower row) such that \(\tilde{a}_{ji} \neq 0 \) and swap rows \(i \) and \(j \).

This operation is called pivoting.
Pivoting

Comment: at each stage of the reduction process we have assumed that $\tilde{a}_{ii} \neq 0$. If we encounter $\tilde{a}_{ij} = 0$ then we look for $j > i$ (a lower row) such that $\tilde{a}_{ji} \neq 0$ and swap rows i and j.

This operation is called \textbf{pivoting}.

Use Gaussian elimination with back substitution to solve the following linear system given in augmented matrix form.

$$
\begin{bmatrix}
1 & -1 & 3 & 2 \\
3 & -3 & 1 & -1 \\
1 & 1 & 0 & 3
\end{bmatrix}
$$
Solution

Gaussian elimination:

\[
\begin{bmatrix}
1 & -1 & 3 & 2 \\
3 & -3 & 1 & -1 \\
1 & 1 & 0 & 3
\end{bmatrix} \mapsto \begin{bmatrix}
1 & -1 & 3 & 2 \\
0 & 0 & -8 & -7 \\
0 & 2 & -3 & 1
\end{bmatrix} \mapsto \begin{bmatrix}
1 & -1 & 3 & 2 \\
0 & 2 & -3 & 1 \\
0 & 0 & -8 & -7
\end{bmatrix}
\]

Back substitution:

\[
x_3 = \frac{7}{8}
\]
\[
x_2 = \frac{1 - (-3)(7/8)}{2} = \frac{29}{16}
\]
\[
x_1 = \frac{2 - 3(7/8) - (-1)(29/16)}{1} = \frac{19}{16}
\]
Question: how many multiplications/divisions and how many additions/subtractions are necessary to reduce the augmented matrix?
Question: how many multiplications/divisions and how many additions/subtractions are necessary to reduce the augmented matrix?

Suppose that at the beginning of the ith stage of the reduction the augmented matrix resembles the following.

$$
\tilde{A} = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1i} & \cdots & a_{1n} & a_{1,n+1} \\
 0 & a_{22} & \cdots & a_{2i} & \cdots & a_{2n} & a_{2,n+1} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & a_{ii} & \cdots & a_{in} & a_{i,n+1} \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & a_{ni} & \cdots & a_{nn} & a_{n,n+1}
\end{bmatrix}
$$
To row reduce below the ith row we must

- Find row multipliers requiring multiplications/divisions.
- Multiply the ith row by each of the row multipliers requiring multiplications/divisions.
- Add a multiple of the ith row to the rows beneath requiring additions/subtractions.

Summary: to row reduce below the ith row requires $(n-i) + (n-i)(n-i+1) = (n-i)(n-i+2)$ multiplications/divisions and $(n-i)(n-i+1)$ additions/subtractions.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring additions/subtractions.

Summary: to row reduce below the ith row requires $(n - i) + (n - i)(n - i + 1) = (n - i)(n - i + 2)$ multiplications/divisions and $(n - i)(n - i + 1)$ additions/subtractions.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring $(n - i)(n - i + 1)$ multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring additions/subtractions.

Summary: to row reduce below the ith row requires $(n - i) + (n - i)(n - i + 1) = (n - i)(n - i + 2)$ multiplications/divisions and $(n - i)(n - i + 1)$ additions/subtractions.

Starting from the original matrix, this set of row reductions must be carried out $n - 1$ times.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring $(n - i)(n - i + 1)$ multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring $(n - i)(n - i + 1)$ additions/subtractions.

Summary: to row reduce below the ith row requires $(n - i) + (n - i)(n - i + 1) = (n - i)(n - i + 2)$ multiplications/divisions and $(n - i)(n - i + 1)$ additions/subtractions.

Starting from the original matrix, this set of row reductions must be carried out $n - 1$ times.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring $(n - i)(n - i + 1)$ multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring $(n - i)(n - i + 1)$ additions/subtractions.

Summary: to row reduce below the ith row requires

$$(n-i) + (n-i)(n-i+1) = (n-i)(n-i+2)$$ multiplication/divisions

and $(n - i)(n - i + 1)$ additions/subtractions.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring $(n - i)(n - i + 1)$ multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring $(n - i)(n - i + 1)$ additions/subtractions.

Summary: to row reduce below the ith row requires

$$(n - i) + (n - i)(n - i + 1) = (n - i)(n - i + 2)$$ multiplications/divisions

and $(n - i)(n - i + 1)$ additions/subtractions.

Starting from the original matrix, this set of row reductions must be carried out $n - 1$ times.
To row reduce below the ith row we must

- Find $n - i$ row multipliers requiring $n - i$ multiplications/divisions.
- Multiply the ith row by each of the $n - i$ row multipliers requiring $(n - i)(n - i + 1)$ multiplications/divisions.
- Add a multiple of the ith row to the $n - i$ rows beneath requiring $(n - i)(n - i + 1)$ additions/subtractions.

Summary: to row reduce below the ith row requires

$$(n-i)+(n-i)(n-i+1) = (n-i)(n-i+2)$$ multiplications/divisions

and $(n - i)(n - i + 1)$ additions/subtractions.

Starting from the original matrix, this set of row reductions must be carried out $n - 1$ times.
Total multiplications/divisions for matrix reduction:

\[\sum_{i=1}^{n-1} (n - i)(n - i + 2) \]

\[= \sum_{i=1}^{n-1} (n^2 + 2n) - (2n + 2) \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} i^2 \]

\[= (n^2 + 2n)(n - 1) - (2n + 2) \frac{n(n - 1)}{2} + \frac{(n - 1)(n)(2n - 1)}{6} \]

\[= \frac{2n^3 + 3n^2 - 5n}{6} \]
Total additions/subtractions for matrix reduction:

\[\sum_{i=1}^{n-1} (n - i)(n - i + 1)\]

\[= \sum_{i=1}^{n-1} (n^2 + n) - (2n + 1) \sum_{i=1}^{n-1} i + \sum_{i=1}^{n-1} i^2\]

\[= (n^2 + n)(n - 1) - (2n + 1) \frac{n(n - 1)}{2} + \frac{(n - 1)(n)(2n - 1)}{6}\]

\[= \frac{n^3 - n}{3}\]
Growth of operation counts required for row reduction:

<table>
<thead>
<tr>
<th>n</th>
<th>Ops</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 \times 10^7</td>
<td>200</td>
</tr>
<tr>
<td>1.0 \times 10^8</td>
<td>400</td>
</tr>
<tr>
<td>1.5 \times 10^8</td>
<td>600</td>
</tr>
<tr>
<td>2.0 \times 10^8</td>
<td>800</td>
</tr>
<tr>
<td>2.5 \times 10^8</td>
<td>1000</td>
</tr>
<tr>
<td>3.0 \times 10^8</td>
<td></td>
</tr>
</tbody>
</table>
Question: how many multiplications/divisions and how many additions/subtractions are necessary to perform the back substitution necessary to solve for x_i?
Question: how many multiplications/divisions and how many additions/subtractions are necessary to perform the back substitution necessary to solve for x_i?

\[
x_i = \frac{\tilde{b}_i - \tilde{a}_{in}x_n - \tilde{a}_{i,n-1}x_{n-1} - \cdots - \tilde{a}_{i,i+1}x_{i+1}}{\tilde{a}_{ii}}
\]
Question: how many multiplications/divisions and how many additions/subtractions are necessary to perform the back substitution necessary to solve for x_i?

$$x_i = \frac{\tilde{b}_i - \tilde{a}_{in}x_n - \tilde{a}_{i,n-1}x_{n-1} - \cdots - \tilde{a}_{i,i+1}x_{i+1}}{\tilde{a}_{ii}}$$

- **Multiplications/divisions:** $n - i + 1$ (if $i \neq n$) or 1 (if $i = n$)
- **Additions/subtractions:** $n - i$
Question: how many multiplications/divisions and how many additions/subtractions are necessary to perform the back substitution necessary to solve for x_i?

$$x_i = \frac{\tilde{b}_i - \tilde{a}_{in}x_n - \tilde{a}_{i,n-1}x_{n-1} - \cdots - \tilde{a}_{i,i+1}x_{i+1}}{\tilde{a}_{ii}}$$

Multiplications/divisions: $n - i + 1$ (if $i \neq n$) or 1 (if $i = n$)

Additions/subtractions: $n - i$

This operation must be carried out $n - 1$ times.
Total multiplications/divisions for back substitution:

\[1 + \sum_{i=1}^{n-1} (n - i + 1) = 1 + \sum_{i=1}^{n-1} (n + 1) - \sum_{i=1}^{n-1} i \]

\[= 1 + (n - 1)(n + 1) - \frac{n(n - 1)}{2} \]

\[= \frac{n^2 + n}{2} \]

Total additions/subtractions for back substitution:

\[\sum_{i=1}^{n-1} (n - i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i \]

\[= n(n - 1) - \frac{n(n - 1)}{2} \]

\[= \frac{n^2 - n}{2} \]
Thus the total operation counts for solving a linear system via Gaussian elimination and back substitution are

multiplications/divisions: \(\frac{n^3 + 3n^2 - n}{3} \)

additions/subtractions: \(\frac{2n^3 + 3n^2 - 5n}{6} \)
Algorithm: Gaussian Elimination with Back Substitution

Given the augmented matrix $A = [a_{ij}]_{i=1,\ldots,n, j=1,\ldots,n+1}$:

STEP 1 For $i = 1, 2, \ldots, n - 1$ set

$$p = \min_{j \in \{i, i+1, \ldots, n\}} \{ j \mid a_{ji} \neq 0 \}$$

- If $p \neq i$ then transpose rows i and p.
- For $j = i + 1, i + 2, \ldots, n$ replace row j by the sum of row j and $-\frac{a_{ji}}{a_{ii}}$ times row i.

STEP 2 Set $x_n = \frac{a_{n,n+1}}{a_{nn}}$.

STEP 3 For $i = n - 1, n - 2, \ldots, 1$ set

$$x_i = \frac{a_{i,n+1} - \sum_{j=i+1}^{n} a_{ij}x_j}{a_{ii}}$$
If no value for p (the pivot) can be found, then no unique solution to the linear system exists.

If $a_{nn} = 0$ then no unique solution exists.
Example

Solve the following linear system using Gaussian elimination with back substitution and 3-digit chopping arithmetic.

\[
\begin{align*}
3.33x_1 + 15900x_2 - 10.3x_3 &= 15900 \\
2.22x_1 + 16.7x_2 + 9.61x_3 &= 28.5 \\
1.56x_1 + 5.17x_2 + 16.8x_3 &= 8.42
\end{align*}
\]
Example

Solve the following linear system using Gaussian elimination with back substitution and 3-digit chopping arithmetic.

\[
\begin{align*}
3.33x_1 + 15900x_2 - 10.3x_3 &= 15900 \\
2.22x_1 + 16.7x_2 + 9.61x_3 &= 28.5 \\
1.56x_1 + 5.17x_2 + 16.8x_3 &= 8.42
\end{align*}
\]

For comparison purposes, the exact solution is nearly:

\[
\begin{align*}
x_1 &= 7.5073 \\
x_2 &= 0.998102 \\
x_3 &= -0.50307
\end{align*}
\]
Augmented matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
2.22 & 16.7 & 9.61 & 28.5 \\
1.56 & 5.17 & 16.8 & 8.42
\end{bmatrix}
\]
Augmented matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
2.22 & 16.7 & 9.61 & 28.5 \\
1.56 & 5.17 & 16.8 & 8.42 \\
\end{bmatrix}
\]

Multiply row 1 by 0.666 and subtract from row 2.

\[
\begin{bmatrix}
2.21 & 10500 & -6.85 & 10500 \\
\end{bmatrix}
\]
Augmented matrix:

$$
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
2.22 & 16.7 & 9.61 & 28.5 \\
1.56 & 5.17 & 16.8 & 8.42
\end{bmatrix}
$$

Multiply row 1 by 0.666 and subtract from row 2.

$$
\begin{bmatrix}
2.21 & 10500 & -6.85 & 10500 \\
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
1.56 & 5.17 & 16.8 & 8.42
\end{bmatrix}
$$
Augmented matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
1.56 & 5.17 & 16.8 & 8.42
\end{bmatrix}
\]
Augmented matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
1.56 & 5.17 & 16.8 & 8.42
\end{bmatrix}
\]

Multiply row 1 by 0.468 and subtract from row 3.

\[
\begin{bmatrix}
1.55 & 7440 & -4.82 & 7440
\end{bmatrix}
\]
Augmented matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
1.56 & 5.17 & 16.8 & 8.42 \\
\end{bmatrix}
\]

Multiply row 1 by 0.468 and subtract from row 3.

\[
\begin{bmatrix}
1.55 & 7440 & -4.82 & 7440 \\
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -7440 & 21.6 & -7440 \\
\end{bmatrix}
\]
Solution (3 of 4)

Partially reduced matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -7440 & 21.6 & -7440
\end{bmatrix}
\]

Multiply row 2 by 0.708 and subtract from row 3.
Partially reduced matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -7440 & 21.6 & -7440 \\
\end{bmatrix}
\]

Multiply row 2 by 0.708 and subtract from row 3.

\[
\begin{bmatrix}
0.01 & -7430 & 11.6 & -7430 \\
\end{bmatrix}
\]
Partially reduced matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -7440 & 21.6 & -7440 \\
\end{bmatrix}
\]

Multiply row 2 by 0.708 and subtract from row 3.

\[
\begin{bmatrix}
0.01 & -7430 & 11.6 & -7430 \\
\end{bmatrix}
\]
Given the reduced matrix:

\[
\begin{bmatrix}

3.33 & 15900 & -10.3 & | & 15900 \\
0.01 & -10500 & 16.4 & | & -10500 \\
0.01 & -10.0 & 10.0 & | & -10.0
\end{bmatrix}
\]

Begin back substitution.

This does not compare very well with the "exact" solution.
Given the reduced matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -10.0 & 10.0 & -10.0 \\
\end{bmatrix}
\]

Begin back substitution.

\[
x_3 = -1.00 \\
x_2 = \frac{-10500 - 16.4(-1.00)}{-10500} = 1.00 \\
x_1 = \frac{15900 - (-10.3)(-1.00) - (15900)(1.00)}{3.33} = 0.00
\]
Given the reduced matrix:

\[
\begin{bmatrix}
3.33 & 15900 & -10.3 & 15900 \\
0.01 & -10500 & 16.4 & -10500 \\
0.01 & -10.0 & 10.0 & -10.0
\end{bmatrix}
\]

Begin back substitution.

\[
x_3 = -1.00
\]
\[
x_2 = \frac{-10500 - 16.4(-1.00)}{-10500} = 1.00
\]
\[
x_1 = \frac{15900 - (-10.3)(-1.00) - (15900)(1.00)}{3.33} = 0.00
\]

This does not compare very well with the “exact” solution.

\[
x_3 = -0.50307
\]
\[
x_2 = 0.998102
\]
\[
x_1 = 7.5073
\]
 Homework

- Read Section 6.1.
- Exercises: 1ad, 3, 5ad, 9, 12, 15