An Introduction to State Space Reconstruction

Applications and Mathematical Prerequisites

J. Robert Buchanan
October 16, 2003

Millersville University of Pennsylvania
email: Bob.Buchanan@millersville.edu
Introduction

“What is past is prologue.”

William Shakespeare

Prediction based on a time series of observations.

- Fluid flow
- Sunspot Activity
- Mechanical vibrations
- Ice age
- Epidemics
- Human speech
Techniques

- Polynomial and rational interpolation
- Fourier series and wavelets
- Neural networks
- Modeling
Polynomial Interpolation

- Blow up as $t \to \pm \infty$
- Poor extrapolation outside of data set
Neural Networks

- Non-linear function approximation
- Layers, thresholds, weights, sigmoid functions
Global vs. Local Modeling

- **Global**: derive equations of motion from first principles, measure initial conditions, integrate solution forward in t.

\[
m u'' + \gamma u' + ku = F(t) \\
\]
\[
u(t_0) = u_0 \\
u'(t_0) = u'_0
\]

- **Local**: build a model directly from data
 - State space reconstruction
 - Nonlinear function approximation
Sunspot Activity Data

Source: www.nasa.gov
Difference equation model:

\[P_t = F(P_{t-1}, P_{t-2}, \ldots, P_{t-j}) \]

Sequence of observations over time:

\[\{P_0, P_1, \ldots, P_N\} \]

Time delay embedding with dimension \(m \), Takens (1981):

\[
\begin{align*}
 x_{m-1} &= \langle P_0, P_1, \ldots, P_{m-1} \rangle \\
 x_m &= \langle P_1, P_2, \ldots, P_m \rangle \\
 &\vdots \\
 x_N &= \langle P_{N-m+1}, P_{N-m+2}, \ldots, P_N \rangle
\end{align*}
\]
Takens’s Theorem

From Casdagli, *et al.* (1991):

Dynamical system: \[x(t) = f^t(x(0)), \quad x \in \mathbb{R}^n \]

Observable: \[y(t) = g(x(t)), \quad y \in \mathbb{R}^d \]

Delay construction map:

\[\Phi(x(t)) = \langle g(f^{-\tau m_p}(x(t))), \ldots, g(x(t)), \ldots, g(f^{\tau m_f}(x(t))) \rangle \]

If \(m = m_f + m_p + 1 \geq 2n + 1 \) then \(\Phi \) is a smooth, one-to-one coordinate transformation with a smooth inverse.
Local Modeling 2

Prediction:

\[\hat{P}_{N+1} = G(x_N) \]

Multi-step prediction:

\[\hat{P}_{N+2} = G(\langle P_{N-m+2}, P_{N-m+3}, \ldots, \hat{P}_{N+1} \rangle) \]
\[\hat{P}_{N+3} = G(\langle P_{N-m+3}, P_{N-m+4}, \ldots, \hat{P}_{N+2} \rangle) \]
\[\vdots \]
Def’n: For a sequence of observations, \(\langle u_1, u_2, \ldots, u_n \rangle \), the **discrete Fourier transform** (DFT) is the sequence \(\langle f_1, f_2, \ldots, f_n \rangle \), where

\[
f_s = \frac{1}{\sqrt{n}} \sum_{r=1}^{n} u_r e^{i2\pi(r-1)(s-1)/n}.
\]

The **inverse discrete Fourier transform** (IDFT) can be used to recover \(u \).

\[
u_r = \frac{1}{\sqrt{n}} \sum_{s=1}^{n} f_s e^{-i2\pi(r-1)(s-1)/n}.
\]
Properties of DFT and IDFT

1. IDFT(DFT(u)) = \(I_{n \times n} \)
2. If \(u \in \mathbb{R}^n \) then \(f_1 \in \mathbb{R} \).
3. If \(u \in \mathbb{R}^{2m} \) then \(f_{m+1} \in \mathbb{R} \).
4. If \(u \in \mathbb{R}^{2m} \) then \(f_{m+1-j} = \overline{f_{m+1+j}} \) for \(j = 1, \ldots, m-1 \).
5. If \(u \in \mathbb{R}^{2m-1} \) then \(f_{2m-j} = \overline{f_{j+1}} \) for \(j = 1, \ldots, m-1 \).
6. Almost the converses of the last two.
Sampling Frequency

- Aliasing
- Nyquist frequency

Two samples per period necessary to completely reconstruct signal from Fourier transform.
Power Spectrum

Let $f = \text{DFT}(u - \bar{u})$, then $p = \langle p_1, p_2, \ldots p_n \rangle$ where $p_k = |f_k|^2$.

Spectrum of sunspot activity:
Interpolation

- Zero padding in the time domain interpolates in the frequency domain.

- Zero padding in the frequency domain interpolates in the time domain.

\[
\begin{align*}
\langle f_1, \ldots, f_m, f_{m+1}, f_{m+2}, \ldots, f_{2m} \rangle & \mapsto \\
\sqrt{k+1}\langle f_1, \ldots, f_m, \frac{f_{m+1}}{2}, 0, \ldots, 0, \frac{f_{m+1}}{2}, f_{m+2}, \ldots, f_{2m} \rangle \\
\text{2km−1 terms}
\end{align*}
\]

\[
\begin{align*}
\langle f_1, \ldots, f_m, f_{m+1}, \ldots, f_{2m−1} \rangle & \mapsto \\
\sqrt{k+1}\langle f_1, \ldots, f_m, 0, \ldots, 0, f_{m+1}, \ldots, f_{2m−1} \rangle \\
\text{(2m−1)k terms}
\end{align*}
\]
If p is one of the zero-padded forms of f then

$$v(k+1)(r-1)+1 = \text{IDFT}(p)(k+1)(r-1)+1 = u_r.$$
Filtering

- Remove high frequency noise
- Reduce data storage requirements
- Perform in parallel with interpolation

\[x_i = L_3 \circ L_2 \circ L_1(P_{i-w+1}, P_{i-w+2}, \ldots, P_i) \]

- L_1 Fourier transform
- L_2 Low pass filter $m/2$ frequencies
- L_3 Inverse Fourier transform
Low Pass Filtering

\[
\langle f_1, f_2, \ldots, f_k, f_{k+1}, \ldots, f_{n-k+1}, f_{n-k+2}, \ldots, f_n \rangle^* \\
\langle 1, 1, \ldots, 1, \frac{1}{2}, 0, \ldots, 0, \frac{1}{2}, 1, \ldots, 1 \rangle
\]

\[\underbrace{k \text{ terms}}_{k \text{ terms}}\]

\[
= \langle f_1, f_2, \ldots, f_k, \frac{f_{k+1}}{2}, 0, \ldots, 0, \frac{f_{n-k+1}}{2}, f_{n-k+2}, \ldots, f_n \rangle
\]

- Vector factors are of the same length and multiplied term-by-term.
- Conjugate symmetry is preserved.
- Can remove pairs of 0’s in product to reduce data storage requirements.
Filtering Example
Prediction Algorithm

1. Create filtered embedding of sequence of observations
2. Find $k \geq 1$ nearest neighbors of x_N
3. For neighbors $\{x_{n_1}, \ldots, x_{n_k}\}$ find $\{P_{n_1+1}, \ldots, P_{n_k+1}\}$
4. Approximate the map $x_\alpha \xrightarrow{G} P_{\alpha+1}$
5. Evaluate $G(x_N) = \hat{P}_{N+1}$
Types of Maps: Averaging

Direct:

\[\hat{P}_{N+1} = \frac{\sum_{i=1}^{k} w_i P_{n_i+1}}{\sum_{i=1}^{k} w_i} \]

Integrated:

\[\hat{P}_{N+1} = P_N + \frac{\sum_{i=1}^{k} w_i (P_{n_i+1} - P_{n_i})}{\sum_{i=1}^{k} w_i} \]

Weights depend on the distance between the neighboring vector and the query vector.

\[w_i = \left[1 - \left(\frac{d(x_N, x_{n_i})}{d(x_N, x_{n_k})} \right)^2 \right]^2 \]
Another Type of Map: Linear

From Sauer (1994):

1. Let c be the center of mass of $\{x_{n_1}, \ldots, x_{n_k}\}$

2. For some $l \leq m$ find the l-dimensional subspace of \mathbb{R}^m containing c closest to the span of $\{x_{n_1}, \ldots, x_{n_k}\}$

\[
A = \begin{bmatrix}
 x_{n_1} - c \\
 \vdots \\
 x_{n_k} - c
\end{bmatrix} = U^tDV
\]

3. Project $\{x_{n_1} - c, \ldots, x_{n_k} - c\}$ onto \mathbb{R}^l

4. Find the affine map $G : \mathbb{R}^l \rightarrow \mathbb{R}$ which best fits the data $\{(\Pi(x_{n_1} - c), P_{n_1 + 1}), \ldots, (\Pi(x_{n_k} - c), P_{n_k + 1})\}$

\[
\hat{P}_{N+1} \approx G(\Pi(x_N - c))
\]
Singular Value Decomposition

If $A \in \mathbb{R}^{k \times m}$, then the singular value decomposition of A is

$$A = U^t D V,$$

where

- $U \in \mathbb{R}^{k \times k}$
- $V \in \mathbb{R}^{m \times m}$
- $D \in \mathbb{R}^{k \times m}$

$$D = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}.$$

- $\Sigma \in \mathbb{R}^{r \times r}$ is diagonal with $r < \min\{k, m\}$.

The first r rows of V are a basis for the rowspace of A.
Possible Estimators/Causality Window

- Map G predicts one step ahead.
- Define G_j which predicts j steps ahead.
- Define $w \in \mathbb{N}$ as the length of the causality window.

$$\hat{P}_{N+1} = \frac{1}{w} \sum_{j=1}^{w} G_j(x_{N-j+1})$$

Mixes direct (single step) and iterated (multi-step) prediction.
Nearest Neighbors

Metric:

\[d^2(x_a, x_b) = \sum_{i=0}^{m-1} \lambda^i (x_{a,m-i} - x_{b,m-i})^2 \]

with \(0 < \lambda \leq 1 \).
Nearest Trajectories

High frequency sampling may produce nearest neighbors which lie on same trajectory.
Tune-able Parameters

- Weight(s) used in metric
- Interpolation factor
- Embedding dimension
- Critical frequency of filter
- Length of causality window
- Number of nearest trajectory neighbors used
- If linear model used, number of dominant singular vectors
Nearest Neighbor Searching

- Brute force search $O(N)$, trivial complexity, requires calculating N distances.
- Binary search $O(\log N)$, requires preprocessing step to produce binary tree, nontrivial complexity.
 - Root cluster contains all embedding vectors
 - Find two cluster centers and divide into two sub-clusters
 - Recurse until terminal clusters have manageable number of embedding vectors
Terminal Clusters after Preprocessing

An Introduction to State Space Reconstruction – p.29
Data Structure for Cluster

Each cluster is represented by a data structure with attributes:

start: Index of first delay coordinate vector in cluster

end: Index of last delay coordinate vector in cluster

center: Index of center of cluster closest to the center of mass

radius: Maximum distance from center to any other vector in cluster

left: Left child sub-cluster (null for leaf clusters)

right: Right child sub-cluster (null for leaf clusters)
Searching for k Nearest Neighbors

Given query vector q and root cluster

1. Process clusters according to priority set by lower bound on distance from cluster to q.

2. Skip clusters for which $d(q, c) - r > d_k$.

3. For terminal clusters, skip delay coordinate vectors for which $|d(q, c) - d(x, c)| > d_k$.

4. Terminate search when lower bound for all remaining clusters exceeds d_k.

Implemented in C language and called from Mathematica.
Exclusion Rules

Cluster i

- c_i
- n_k
- r_i

- $d(c_i, q)$
- $d(n_k, q)$

- $d(x, q)$

- c_i
- n_k

An Introduction to State Space Reconstruction – p.32
Speed Comparisons

Data: 49977 delay coordinate vectors of dimension 25.

Time to pre-process: 3.893465 seconds

Time to brute force search: 1.925136 seconds

Time to binary search: 0.001003 seconds
Trial Run

- Data set: sequence of x values from the Lorenz ODE.

\[
\begin{align*}
\frac{dx}{dt} &= 10(y - x) \\
\frac{dy}{dt} &= 28x - y - xz \\
\frac{dz}{dt} &= -\frac{8}{3}z + xy
\end{align*}
\]

$x(0) = 1/10$

$y(0) = -1/5$

$z(0) = 3/10$

- 10000 data points generated with $\Delta t = 0.05$.
Lorenz Attractor
Algorithm Parameters

- Model uses only \(\{x_{500}, x_{501}, \ldots, x_{2499}\} \).
- No noise in data, thus no filtering necessary.
- Interpolation factor of 5.
- Input window of length 32, output delay coordinate vector of length 16.
- Linear model with 2 dominant singular vectors.
- Causality window of length 16.
- Predict next 500 interpolated points in the orbit of the \(x \) coordinate of the Lorenz system (next 100 un-interpolated points).
Legend: true Lorenz output, predicted Lorenz output
Future

- Have algorithm optimize model parameters
- Apply to different data sets